Metamath Proof Explorer


Theorem difin0ss

Description: Difference, intersection, and subclass relationship. (Contributed by NM, 30-Apr-1994) (Proof shortened by Wolf Lammen, 30-Sep-2014)

Ref Expression
Assertion difin0ss ABC=CACB

Proof

Step Hyp Ref Expression
1 eq0 ABC=x¬xABC
2 iman xCxAxB¬xC¬xAxB
3 elin xABCxABxC
4 eldif xABxA¬xB
5 4 anbi2ci xABxCxCxA¬xB
6 annim xA¬xB¬xAxB
7 6 anbi2i xCxA¬xBxC¬xAxB
8 3 5 7 3bitri xABCxC¬xAxB
9 2 8 xchbinxr xCxAxB¬xABC
10 ax-2 xCxAxBxCxAxCxB
11 9 10 sylbir ¬xABCxCxAxCxB
12 11 al2imi x¬xABCxxCxAxxCxB
13 dfss2 CAxxCxA
14 dfss2 CBxxCxB
15 12 13 14 3imtr4g x¬xABCCACB
16 1 15 sylbi ABC=CACB