Metamath Proof Explorer


Theorem difinf

Description: An infinite set A minus a finite set is infinite. (Contributed by FL, 3-Aug-2009)

Ref Expression
Assertion difinf ¬AFinBFin¬ABFin

Proof

Step Hyp Ref Expression
1 unfi ABFinBFinABBFin
2 undif1 ABB=AB
3 2 eleq1i ABBFinABFin
4 unfir ABFinAFinBFin
5 4 simpld ABFinAFin
6 3 5 sylbi ABBFinAFin
7 1 6 syl ABFinBFinAFin
8 7 expcom BFinABFinAFin
9 8 con3d BFin¬AFin¬ABFin
10 9 impcom ¬AFinBFin¬ABFin