Metamath Proof Explorer


Theorem difjust

Description: Soundness justification theorem for df-dif . (Contributed by Rodolfo Medina, 27-Apr-2010) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion difjust x|xA¬xB=y|yA¬yB

Proof

Step Hyp Ref Expression
1 eleq1w x=zxAzA
2 eleq1w x=zxBzB
3 2 notbid x=z¬xB¬zB
4 1 3 anbi12d x=zxA¬xBzA¬zB
5 4 cbvabv x|xA¬xB=z|zA¬zB
6 eleq1w z=yzAyA
7 eleq1w z=yzByB
8 7 notbid z=y¬zB¬yB
9 6 8 anbi12d z=yzA¬zByA¬yB
10 9 cbvabv z|zA¬zB=y|yA¬yB
11 5 10 eqtri x|xA¬xB=y|yA¬yB