Metamath Proof Explorer


Theorem dihordlem7

Description: Part of proof of Lemma N of Crawley p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dihordlem8.b B = Base K
dihordlem8.l ˙ = K
dihordlem8.a A = Atoms K
dihordlem8.h H = LHyp K
dihordlem8.p P = oc K W
dihordlem8.o O = h T I B
dihordlem8.t T = LTrn K W
dihordlem8.e E = TEndo K W
dihordlem8.u U = DVecH K W
dihordlem8.s + ˙ = + U
dihordlem8.g G = ι h T | h P = R
Assertion dihordlem7 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O f = s G g O = s

Proof

Step Hyp Ref Expression
1 dihordlem8.b B = Base K
2 dihordlem8.l ˙ = K
3 dihordlem8.a A = Atoms K
4 dihordlem8.h H = LHyp K
5 dihordlem8.p P = oc K W
6 dihordlem8.o O = h T I B
7 dihordlem8.t T = LTrn K W
8 dihordlem8.e E = TEndo K W
9 dihordlem8.u U = DVecH K W
10 dihordlem8.s + ˙ = + U
11 dihordlem8.g G = ι h T | h P = R
12 simp33 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O f O = s G s + ˙ g O
13 simp1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O K HL W H
14 simp2l K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O Q A ¬ Q ˙ W
15 simp2r K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O R A ¬ R ˙ W
16 simp31 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O s E
17 simp32 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O g T
18 1 2 3 4 5 6 7 8 9 10 11 dihordlem6 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T s G s + ˙ g O = s G g s
19 13 14 15 16 17 18 syl122anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O s G s + ˙ g O = s G g s
20 12 19 eqtrd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O f O = s G g s
21 fvex s G V
22 vex g V
23 21 22 coex s G g V
24 vex s V
25 23 24 opth2 f O = s G g s f = s G g O = s
26 20 25 sylib K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O f = s G g O = s