Metamath Proof Explorer


Theorem dipass

Description: Associative law for inner product. Equation I2 of Ponnusamy p. 363. (Contributed by NM, 25-Aug-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ipass.1 X = BaseSet U
ipass.4 S = 𝑠OLD U
ipass.7 P = 𝑖OLD U
Assertion dipass U CPreHil OLD A B X C X A S B P C = A B P C

Proof

Step Hyp Ref Expression
1 ipass.1 X = BaseSet U
2 ipass.4 S = 𝑠OLD U
3 ipass.7 P = 𝑖OLD U
4 fveq2 U = if U CPreHil OLD U + × abs BaseSet U = BaseSet if U CPreHil OLD U + × abs
5 1 4 eqtrid U = if U CPreHil OLD U + × abs X = BaseSet if U CPreHil OLD U + × abs
6 5 eleq2d U = if U CPreHil OLD U + × abs B X B BaseSet if U CPreHil OLD U + × abs
7 5 eleq2d U = if U CPreHil OLD U + × abs C X C BaseSet if U CPreHil OLD U + × abs
8 6 7 3anbi23d U = if U CPreHil OLD U + × abs A B X C X A B BaseSet if U CPreHil OLD U + × abs C BaseSet if U CPreHil OLD U + × abs
9 fveq2 U = if U CPreHil OLD U + × abs 𝑠OLD U = 𝑠OLD if U CPreHil OLD U + × abs
10 2 9 eqtrid U = if U CPreHil OLD U + × abs S = 𝑠OLD if U CPreHil OLD U + × abs
11 10 oveqd U = if U CPreHil OLD U + × abs A S B = A 𝑠OLD if U CPreHil OLD U + × abs B
12 11 oveq1d U = if U CPreHil OLD U + × abs A S B P C = A 𝑠OLD if U CPreHil OLD U + × abs B P C
13 fveq2 U = if U CPreHil OLD U + × abs 𝑖OLD U = 𝑖OLD if U CPreHil OLD U + × abs
14 3 13 eqtrid U = if U CPreHil OLD U + × abs P = 𝑖OLD if U CPreHil OLD U + × abs
15 14 oveqd U = if U CPreHil OLD U + × abs A 𝑠OLD if U CPreHil OLD U + × abs B P C = A 𝑠OLD if U CPreHil OLD U + × abs B 𝑖OLD if U CPreHil OLD U + × abs C
16 12 15 eqtrd U = if U CPreHil OLD U + × abs A S B P C = A 𝑠OLD if U CPreHil OLD U + × abs B 𝑖OLD if U CPreHil OLD U + × abs C
17 14 oveqd U = if U CPreHil OLD U + × abs B P C = B 𝑖OLD if U CPreHil OLD U + × abs C
18 17 oveq2d U = if U CPreHil OLD U + × abs A B P C = A B 𝑖OLD if U CPreHil OLD U + × abs C
19 16 18 eqeq12d U = if U CPreHil OLD U + × abs A S B P C = A B P C A 𝑠OLD if U CPreHil OLD U + × abs B 𝑖OLD if U CPreHil OLD U + × abs C = A B 𝑖OLD if U CPreHil OLD U + × abs C
20 8 19 imbi12d U = if U CPreHil OLD U + × abs A B X C X A S B P C = A B P C A B BaseSet if U CPreHil OLD U + × abs C BaseSet if U CPreHil OLD U + × abs A 𝑠OLD if U CPreHil OLD U + × abs B 𝑖OLD if U CPreHil OLD U + × abs C = A B 𝑖OLD if U CPreHil OLD U + × abs C
21 eqid BaseSet if U CPreHil OLD U + × abs = BaseSet if U CPreHil OLD U + × abs
22 eqid + v if U CPreHil OLD U + × abs = + v if U CPreHil OLD U + × abs
23 eqid 𝑠OLD if U CPreHil OLD U + × abs = 𝑠OLD if U CPreHil OLD U + × abs
24 eqid 𝑖OLD if U CPreHil OLD U + × abs = 𝑖OLD if U CPreHil OLD U + × abs
25 elimphu if U CPreHil OLD U + × abs CPreHil OLD
26 21 22 23 24 25 ipassi A B BaseSet if U CPreHil OLD U + × abs C BaseSet if U CPreHil OLD U + × abs A 𝑠OLD if U CPreHil OLD U + × abs B 𝑖OLD if U CPreHil OLD U + × abs C = A B 𝑖OLD if U CPreHil OLD U + × abs C
27 20 26 dedth U CPreHil OLD A B X C X A S B P C = A B P C
28 27 imp U CPreHil OLD A B X C X A S B P C = A B P C