Metamath Proof Explorer


Theorem dipassr

Description: "Associative" law for second argument of inner product (compare dipass ). (Contributed by NM, 22-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ipass.1 X=BaseSetU
ipass.4 S=𝑠OLDU
ipass.7 P=𝑖OLDU
Assertion dipassr UCPreHilOLDAXBCXAPBSC=BAPC

Proof

Step Hyp Ref Expression
1 ipass.1 X=BaseSetU
2 ipass.4 S=𝑠OLDU
3 ipass.7 P=𝑖OLDU
4 3anrot AXBCXBCXAX
5 1 2 3 dipass UCPreHilOLDBCXAXBSCPA=BCPA
6 4 5 sylan2b UCPreHilOLDAXBCXBSCPA=BCPA
7 6 fveq2d UCPreHilOLDAXBCXBSCPA=BCPA
8 phnv UCPreHilOLDUNrmCVec
9 simpl UNrmCVecAXBCXUNrmCVec
10 1 2 nvscl UNrmCVecBCXBSCX
11 10 3adant3r1 UNrmCVecAXBCXBSCX
12 simpr1 UNrmCVecAXBCXAX
13 1 3 dipcj UNrmCVecBSCXAXBSCPA=APBSC
14 9 11 12 13 syl3anc UNrmCVecAXBCXBSCPA=APBSC
15 8 14 sylan UCPreHilOLDAXBCXBSCPA=APBSC
16 simpr2 UNrmCVecAXBCXB
17 1 3 dipcl UNrmCVecCXAXCPA
18 17 3com23 UNrmCVecAXCXCPA
19 18 3adant3r2 UNrmCVecAXBCXCPA
20 16 19 cjmuld UNrmCVecAXBCXBCPA=BCPA
21 1 3 dipcj UNrmCVecCXAXCPA=APC
22 21 3com23 UNrmCVecAXCXCPA=APC
23 22 3adant3r2 UNrmCVecAXBCXCPA=APC
24 23 oveq2d UNrmCVecAXBCXBCPA=BAPC
25 20 24 eqtrd UNrmCVecAXBCXBCPA=BAPC
26 8 25 sylan UCPreHilOLDAXBCXBCPA=BAPC
27 7 15 26 3eqtr3d UCPreHilOLDAXBCXAPBSC=BAPC