Description: "Associative" law for second argument of inner product (compare dipass ). (Contributed by NM, 22-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ipass.1 | |
|
ipass.4 | |
||
ipass.7 | |
||
Assertion | dipassr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipass.1 | |
|
2 | ipass.4 | |
|
3 | ipass.7 | |
|
4 | 3anrot | |
|
5 | 1 2 3 | dipass | |
6 | 4 5 | sylan2b | |
7 | 6 | fveq2d | |
8 | phnv | |
|
9 | simpl | |
|
10 | 1 2 | nvscl | |
11 | 10 | 3adant3r1 | |
12 | simpr1 | |
|
13 | 1 3 | dipcj | |
14 | 9 11 12 13 | syl3anc | |
15 | 8 14 | sylan | |
16 | simpr2 | |
|
17 | 1 3 | dipcl | |
18 | 17 | 3com23 | |
19 | 18 | 3adant3r2 | |
20 | 16 19 | cjmuld | |
21 | 1 3 | dipcj | |
22 | 21 | 3com23 | |
23 | 22 | 3adant3r2 | |
24 | 23 | oveq2d | |
25 | 20 24 | eqtrd | |
26 | 8 25 | sylan | |
27 | 7 15 26 | 3eqtr3d | |