Metamath Proof Explorer


Theorem dipassr2

Description: "Associative" law for inner product. Conjugate version of dipassr . (Contributed by NM, 23-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ipass.1 X=BaseSetU
ipass.4 S=𝑠OLDU
ipass.7 P=𝑖OLDU
Assertion dipassr2 UCPreHilOLDAXBCXAPBSC=BAPC

Proof

Step Hyp Ref Expression
1 ipass.1 X=BaseSetU
2 ipass.4 S=𝑠OLDU
3 ipass.7 P=𝑖OLDU
4 cjcl BB
5 1 2 3 dipassr UCPreHilOLDAXBCXAPBSC=BAPC
6 4 5 syl3anr2 UCPreHilOLDAXBCXAPBSC=BAPC
7 cjcj BB=B
8 7 3ad2ant2 AXBCXB=B
9 8 adantl UCPreHilOLDAXBCXB=B
10 9 oveq1d UCPreHilOLDAXBCXBAPC=BAPC
11 6 10 eqtrd UCPreHilOLDAXBCXAPBSC=BAPC