Metamath Proof Explorer


Theorem dipsubdir

Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ipsubdir.1 X=BaseSetU
ipsubdir.3 M=-vU
ipsubdir.7 P=𝑖OLDU
Assertion dipsubdir UCPreHilOLDAXBXCXAMBPC=APCBPC

Proof

Step Hyp Ref Expression
1 ipsubdir.1 X=BaseSetU
2 ipsubdir.3 M=-vU
3 ipsubdir.7 P=𝑖OLDU
4 idd UCPreHilOLDAXAX
5 phnv UCPreHilOLDUNrmCVec
6 neg1cn 1
7 eqid 𝑠OLDU=𝑠OLDU
8 1 7 nvscl UNrmCVec1BX-1𝑠OLDUBX
9 6 8 mp3an2 UNrmCVecBX-1𝑠OLDUBX
10 5 9 sylan UCPreHilOLDBX-1𝑠OLDUBX
11 10 ex UCPreHilOLDBX-1𝑠OLDUBX
12 idd UCPreHilOLDCXCX
13 4 11 12 3anim123d UCPreHilOLDAXBXCXAX-1𝑠OLDUBXCX
14 13 imp UCPreHilOLDAXBXCXAX-1𝑠OLDUBXCX
15 eqid +vU=+vU
16 1 15 3 dipdir UCPreHilOLDAX-1𝑠OLDUBXCXA+vU-1𝑠OLDUBPC=APC+-1𝑠OLDUBPC
17 14 16 syldan UCPreHilOLDAXBXCXA+vU-1𝑠OLDUBPC=APC+-1𝑠OLDUBPC
18 1 15 7 2 nvmval UNrmCVecAXBXAMB=A+vU-1𝑠OLDUB
19 5 18 syl3an1 UCPreHilOLDAXBXAMB=A+vU-1𝑠OLDUB
20 19 3adant3r3 UCPreHilOLDAXBXCXAMB=A+vU-1𝑠OLDUB
21 20 oveq1d UCPreHilOLDAXBXCXAMBPC=A+vU-1𝑠OLDUBPC
22 1 7 3 dipass UCPreHilOLD1BXCX-1𝑠OLDUBPC=-1BPC
23 6 22 mp3anr1 UCPreHilOLDBXCX-1𝑠OLDUBPC=-1BPC
24 1 3 dipcl UNrmCVecBXCXBPC
25 24 3expb UNrmCVecBXCXBPC
26 5 25 sylan UCPreHilOLDBXCXBPC
27 26 mulm1d UCPreHilOLDBXCX-1BPC=BPC
28 23 27 eqtrd UCPreHilOLDBXCX-1𝑠OLDUBPC=BPC
29 28 3adantr1 UCPreHilOLDAXBXCX-1𝑠OLDUBPC=BPC
30 29 oveq2d UCPreHilOLDAXBXCXAPC+-1𝑠OLDUBPC=APC+BPC
31 1 3 dipcl UNrmCVecAXCXAPC
32 31 3adant3r2 UNrmCVecAXBXCXAPC
33 24 3adant3r1 UNrmCVecAXBXCXBPC
34 32 33 negsubd UNrmCVecAXBXCXAPC+BPC=APCBPC
35 5 34 sylan UCPreHilOLDAXBXCXAPC+BPC=APCBPC
36 30 35 eqtr2d UCPreHilOLDAXBXCXAPCBPC=APC+-1𝑠OLDUBPC
37 17 21 36 3eqtr4d UCPreHilOLDAXBXCXAMBPC=APCBPC