Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ipsubdir.1 | |
|
ipsubdir.3 | |
||
ipsubdir.7 | |
||
Assertion | dipsubdir | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipsubdir.1 | |
|
2 | ipsubdir.3 | |
|
3 | ipsubdir.7 | |
|
4 | idd | |
|
5 | phnv | |
|
6 | neg1cn | |
|
7 | eqid | |
|
8 | 1 7 | nvscl | |
9 | 6 8 | mp3an2 | |
10 | 5 9 | sylan | |
11 | 10 | ex | |
12 | idd | |
|
13 | 4 11 12 | 3anim123d | |
14 | 13 | imp | |
15 | eqid | |
|
16 | 1 15 3 | dipdir | |
17 | 14 16 | syldan | |
18 | 1 15 7 2 | nvmval | |
19 | 5 18 | syl3an1 | |
20 | 19 | 3adant3r3 | |
21 | 20 | oveq1d | |
22 | 1 7 3 | dipass | |
23 | 6 22 | mp3anr1 | |
24 | 1 3 | dipcl | |
25 | 24 | 3expb | |
26 | 5 25 | sylan | |
27 | 26 | mulm1d | |
28 | 23 27 | eqtrd | |
29 | 28 | 3adantr1 | |
30 | 29 | oveq2d | |
31 | 1 3 | dipcl | |
32 | 31 | 3adant3r2 | |
33 | 24 | 3adant3r1 | |
34 | 32 33 | negsubd | |
35 | 5 34 | sylan | |
36 | 30 35 | eqtr2d | |
37 | 17 21 36 | 3eqtr4d | |