| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipsubdir.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
ipsubdir.3 |
|- M = ( -v ` U ) |
| 3 |
|
ipsubdir.7 |
|- P = ( .iOLD ` U ) |
| 4 |
|
idd |
|- ( U e. CPreHilOLD -> ( A e. X -> A e. X ) ) |
| 5 |
|
phnv |
|- ( U e. CPreHilOLD -> U e. NrmCVec ) |
| 6 |
|
neg1cn |
|- -u 1 e. CC |
| 7 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
| 8 |
1 7
|
nvscl |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) |
| 9 |
6 8
|
mp3an2 |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) |
| 10 |
5 9
|
sylan |
|- ( ( U e. CPreHilOLD /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) |
| 11 |
10
|
ex |
|- ( U e. CPreHilOLD -> ( B e. X -> ( -u 1 ( .sOLD ` U ) B ) e. X ) ) |
| 12 |
|
idd |
|- ( U e. CPreHilOLD -> ( C e. X -> C e. X ) ) |
| 13 |
4 11 12
|
3anim123d |
|- ( U e. CPreHilOLD -> ( ( A e. X /\ B e. X /\ C e. X ) -> ( A e. X /\ ( -u 1 ( .sOLD ` U ) B ) e. X /\ C e. X ) ) ) |
| 14 |
13
|
imp |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A e. X /\ ( -u 1 ( .sOLD ` U ) B ) e. X /\ C e. X ) ) |
| 15 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
| 16 |
1 15 3
|
dipdir |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ ( -u 1 ( .sOLD ` U ) B ) e. X /\ C e. X ) ) -> ( ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) P C ) = ( ( A P C ) + ( ( -u 1 ( .sOLD ` U ) B ) P C ) ) ) |
| 17 |
14 16
|
syldan |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) P C ) = ( ( A P C ) + ( ( -u 1 ( .sOLD ` U ) B ) P C ) ) ) |
| 18 |
1 15 7 2
|
nvmval |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M B ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 19 |
5 18
|
syl3an1 |
|- ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> ( A M B ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 20 |
19
|
3adant3r3 |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A M B ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 21 |
20
|
oveq1d |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A M B ) P C ) = ( ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) P C ) ) |
| 22 |
1 7 3
|
dipass |
|- ( ( U e. CPreHilOLD /\ ( -u 1 e. CC /\ B e. X /\ C e. X ) ) -> ( ( -u 1 ( .sOLD ` U ) B ) P C ) = ( -u 1 x. ( B P C ) ) ) |
| 23 |
6 22
|
mp3anr1 |
|- ( ( U e. CPreHilOLD /\ ( B e. X /\ C e. X ) ) -> ( ( -u 1 ( .sOLD ` U ) B ) P C ) = ( -u 1 x. ( B P C ) ) ) |
| 24 |
1 3
|
dipcl |
|- ( ( U e. NrmCVec /\ B e. X /\ C e. X ) -> ( B P C ) e. CC ) |
| 25 |
24
|
3expb |
|- ( ( U e. NrmCVec /\ ( B e. X /\ C e. X ) ) -> ( B P C ) e. CC ) |
| 26 |
5 25
|
sylan |
|- ( ( U e. CPreHilOLD /\ ( B e. X /\ C e. X ) ) -> ( B P C ) e. CC ) |
| 27 |
26
|
mulm1d |
|- ( ( U e. CPreHilOLD /\ ( B e. X /\ C e. X ) ) -> ( -u 1 x. ( B P C ) ) = -u ( B P C ) ) |
| 28 |
23 27
|
eqtrd |
|- ( ( U e. CPreHilOLD /\ ( B e. X /\ C e. X ) ) -> ( ( -u 1 ( .sOLD ` U ) B ) P C ) = -u ( B P C ) ) |
| 29 |
28
|
3adantr1 |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( -u 1 ( .sOLD ` U ) B ) P C ) = -u ( B P C ) ) |
| 30 |
29
|
oveq2d |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A P C ) + ( ( -u 1 ( .sOLD ` U ) B ) P C ) ) = ( ( A P C ) + -u ( B P C ) ) ) |
| 31 |
1 3
|
dipcl |
|- ( ( U e. NrmCVec /\ A e. X /\ C e. X ) -> ( A P C ) e. CC ) |
| 32 |
31
|
3adant3r2 |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A P C ) e. CC ) |
| 33 |
24
|
3adant3r1 |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B P C ) e. CC ) |
| 34 |
32 33
|
negsubd |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A P C ) + -u ( B P C ) ) = ( ( A P C ) - ( B P C ) ) ) |
| 35 |
5 34
|
sylan |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A P C ) + -u ( B P C ) ) = ( ( A P C ) - ( B P C ) ) ) |
| 36 |
30 35
|
eqtr2d |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A P C ) - ( B P C ) ) = ( ( A P C ) + ( ( -u 1 ( .sOLD ` U ) B ) P C ) ) ) |
| 37 |
17 21 36
|
3eqtr4d |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A M B ) P C ) = ( ( A P C ) - ( B P C ) ) ) |