Metamath Proof Explorer


Theorem disjnf

Description: In case x is not free in B , disjointness is not so interesting since it reduces to cases where A is a singleton. (Google Groups discussion with Peter Mazsa.) (Contributed by Thierry Arnoux, 26-Jul-2018)

Ref Expression
Assertion disjnf Disj x A B B = * x x A

Proof

Step Hyp Ref Expression
1 inidm B B = B
2 1 eqeq1i B B = B =
3 2 orbi1i B B = x A y A x = y B = x A y A x = y
4 eqidd x = y B = B
5 4 disjor Disj x A B x A y A x = y B B =
6 orcom x = y B B = B B = x = y
7 6 ralbii y A x = y B B = y A B B = x = y
8 r19.32v y A B B = x = y B B = y A x = y
9 7 8 bitri y A x = y B B = B B = y A x = y
10 9 ralbii x A y A x = y B B = x A B B = y A x = y
11 r19.32v x A B B = y A x = y B B = x A y A x = y
12 5 10 11 3bitri Disj x A B B B = x A y A x = y
13 moel * x x A x A y A x = y
14 13 orbi2i B = * x x A B = x A y A x = y
15 3 12 14 3bitr4i Disj x A B B = * x x A