Metamath Proof Explorer


Theorem disjss

Description: Subclass theorem for disjoints. (Contributed by Peter Mazsa, 28-Oct-2020) (Revised by Peter Mazsa, 22-Sep-2021)

Ref Expression
Assertion disjss ABDisjBDisjA

Proof

Step Hyp Ref Expression
1 cnvss ABA-1B-1
2 funALTVss A-1B-1FunALTVB-1FunALTVA-1
3 1 2 syl ABFunALTVB-1FunALTVA-1
4 relss ABRelBRelA
5 3 4 anim12d ABFunALTVB-1RelBFunALTVA-1RelA
6 dfdisjALTV DisjBFunALTVB-1RelB
7 dfdisjALTV DisjAFunALTVA-1RelA
8 5 6 7 3imtr4g ABDisjBDisjA