Metamath Proof Explorer


Theorem div2sub

Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013)

Ref Expression
Assertion div2sub ABCDCDABCD=BADC

Proof

Step Hyp Ref Expression
1 subcl ABAB
2 subcl CDCD
3 2 3adant3 CDCDCD
4 subeq0 CDCD=0C=D
5 4 necon3bid CDCD0CD
6 5 biimp3ar CDCDCD0
7 3 6 jca CDCDCDCD0
8 div2neg ABCDCD0ABCD=ABCD
9 8 3expb ABCDCD0ABCD=ABCD
10 1 7 9 syl2an ABCDCDABCD=ABCD
11 negsubdi2 ABAB=BA
12 negsubdi2 CDCD=DC
13 12 3adant3 CDCDCD=DC
14 11 13 oveqan12d ABCDCDABCD=BADC
15 10 14 eqtr3d ABCDCDABCD=BADC