Metamath Proof Explorer


Theorem divalglem0

Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Hypotheses divalglem0.1 N
divalglem0.2 D
Assertion divalglem0 RKDNRDNRKD

Proof

Step Hyp Ref Expression
1 divalglem0.1 N
2 divalglem0.2 D
3 iddvds DDD
4 dvdsabsb DDDDDD
5 4 anidms DDDDD
6 3 5 mpbid DDD
7 2 6 ax-mp DD
8 nn0abscl DD0
9 2 8 ax-mp D0
10 9 nn0zi D
11 dvdsmultr2 DKDDDDKD
12 2 10 11 mp3an13 KDDDKD
13 7 12 mpi KDKD
14 13 adantl RKDKD
15 zsubcl NRNR
16 1 15 mpan RNR
17 zmulcl KDKD
18 10 17 mpan2 KKD
19 dvds2add DNRKDDNRDKDDN-R+KD
20 2 16 18 19 mp3an3an RKDNRDKDDN-R+KD
21 14 20 mpan2d RKDNRDN-R+KD
22 zcn NN
23 1 22 ax-mp N
24 zcn RR
25 18 zcnd KKD
26 subsub NRKDNRKD=N-R+KD
27 23 24 25 26 mp3an3an RKNRKD=N-R+KD
28 27 breq2d RKDNRKDDN-R+KD
29 21 28 sylibrd RKDNRDNRKD