Metamath Proof Explorer


Theorem diveq1

Description: Equality in terms of unit ratio. (Contributed by Stefan O'Rear, 27-Aug-2015)

Ref Expression
Assertion diveq1 ABB0AB=1A=B

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 divmul2 A1BB0AB=1A=B1
3 1 2 mp3an2 ABB0AB=1A=B1
4 3 3impb ABB0AB=1A=B1
5 simp2 ABB0B
6 5 mulridd ABB0B1=B
7 6 eqeq2d ABB0A=B1A=B
8 4 7 bitrd ABB0AB=1A=B