Metamath Proof Explorer


Theorem dju1en

Description: Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of Enderton p. 143. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion dju1en AV¬AAA⊔︀1𝑜sucA

Proof

Step Hyp Ref Expression
1 enrefg AVAA
2 1 adantr AV¬AAAA
3 ensn1g AVA1𝑜
4 3 ensymd AV1𝑜A
5 4 adantr AV¬AA1𝑜A
6 simpr AV¬AA¬AA
7 disjsn AA=¬AA
8 6 7 sylibr AV¬AAAA=
9 djuenun AA1𝑜AAA=A⊔︀1𝑜AA
10 2 5 8 9 syl3anc AV¬AAA⊔︀1𝑜AA
11 df-suc sucA=AA
12 10 11 breqtrrdi AV¬AAA⊔︀1𝑜sucA