Metamath Proof Explorer


Theorem djudom1

Description: Ordering law for cardinal addition. Exercise 4.56(f) of Mendelson p. 258. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015) (Revised by Jim Kingdon, 1-Sep-2023)

Ref Expression
Assertion djudom1 ABCVA⊔︀CB⊔︀C

Proof

Step Hyp Ref Expression
1 snex V
2 1 xpdom2 AB×A×B
3 snex 1𝑜V
4 xpexg 1𝑜VCV1𝑜×CV
5 3 4 mpan CV1𝑜×CV
6 domrefg 1𝑜×CV1𝑜×C1𝑜×C
7 5 6 syl CV1𝑜×C1𝑜×C
8 xp01disjl ×B1𝑜×C=
9 undom ×A×B1𝑜×C1𝑜×C×B1𝑜×C=×A1𝑜×C×B1𝑜×C
10 8 9 mpan2 ×A×B1𝑜×C1𝑜×C×A1𝑜×C×B1𝑜×C
11 2 7 10 syl2an ABCV×A1𝑜×C×B1𝑜×C
12 df-dju A⊔︀C=×A1𝑜×C
13 df-dju B⊔︀C=×B1𝑜×C
14 11 12 13 3brtr4g ABCVA⊔︀CB⊔︀C