Metamath Proof Explorer


Theorem dmaf

Description: The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a A = Arrow C
arwdm.b B = Base C
Assertion dmaf dom a A : A B

Proof

Step Hyp Ref Expression
1 arwrcl.a A = Arrow C
2 arwdm.b B = Base C
3 fo1st 1 st : V onto V
4 fofn 1 st : V onto V 1 st Fn V
5 3 4 ax-mp 1 st Fn V
6 fof 1 st : V onto V 1 st : V V
7 3 6 ax-mp 1 st : V V
8 fnfco 1 st Fn V 1 st : V V 1 st 1 st Fn V
9 5 7 8 mp2an 1 st 1 st Fn V
10 df-doma dom a = 1 st 1 st
11 10 fneq1i dom a Fn V 1 st 1 st Fn V
12 9 11 mpbir dom a Fn V
13 ssv A V
14 fnssres dom a Fn V A V dom a A Fn A
15 12 13 14 mp2an dom a A Fn A
16 fvres x A dom a A x = dom a x
17 1 2 arwdm x A dom a x B
18 16 17 eqeltrd x A dom a A x B
19 18 rgen x A dom a A x B
20 ffnfv dom a A : A B dom a A Fn A x A dom a A x B
21 15 19 20 mpbir2an dom a A : A B