Metamath Proof Explorer


Theorem dmaf

Description: The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a A=ArrowC
arwdm.b B=BaseC
Assertion dmaf domaA:AB

Proof

Step Hyp Ref Expression
1 arwrcl.a A=ArrowC
2 arwdm.b B=BaseC
3 fo1st 1st:VontoV
4 fofn 1st:VontoV1stFnV
5 3 4 ax-mp 1stFnV
6 fof 1st:VontoV1st:VV
7 3 6 ax-mp 1st:VV
8 fnfco 1stFnV1st:VV1st1stFnV
9 5 7 8 mp2an 1st1stFnV
10 df-doma doma=1st1st
11 10 fneq1i domaFnV1st1stFnV
12 9 11 mpbir domaFnV
13 ssv AV
14 fnssres domaFnVAVdomaAFnA
15 12 13 14 mp2an domaAFnA
16 fvres xAdomaAx=domax
17 1 2 arwdm xAdomaxB
18 16 17 eqeltrd xAdomaAxB
19 18 rgen xAdomaAxB
20 ffnfv domaA:ABdomaAFnAxAdomaAxB
21 15 19 20 mpbir2an domaA:AB