Metamath Proof Explorer


Theorem dmatALTbas

Description: The base set of the algebra of N x N diagonal matrices over a ring R , i.e. the set of all N x N diagonal matrices over the ring R . (Contributed by AV, 8-Dec-2019)

Ref Expression
Hypotheses dmatALTval.a A=NMatR
dmatALTval.b B=BaseA
dmatALTval.0 0˙=0R
dmatALTval.d D=NDMatALTR
Assertion dmatALTbas NFinRVBaseD=mB|iNjNijimj=0˙

Proof

Step Hyp Ref Expression
1 dmatALTval.a A=NMatR
2 dmatALTval.b B=BaseA
3 dmatALTval.0 0˙=0R
4 dmatALTval.d D=NDMatALTR
5 1 2 3 4 dmatALTval NFinRVD=A𝑠mB|iNjNijimj=0˙
6 5 fveq2d NFinRVBaseD=BaseA𝑠mB|iNjNijimj=0˙
7 2 fvexi BV
8 rabexg BVmB|iNjNijimj=0˙V
9 7 8 mp1i NFinRVmB|iNjNijimj=0˙V
10 eqid A𝑠mB|iNjNijimj=0˙=A𝑠mB|iNjNijimj=0˙
11 10 2 ressbas mB|iNjNijimj=0˙VmB|iNjNijimj=0˙B=BaseA𝑠mB|iNjNijimj=0˙
12 9 11 syl NFinRVmB|iNjNijimj=0˙B=BaseA𝑠mB|iNjNijimj=0˙
13 inrab2 mB|iNjNijimj=0˙B=mBB|iNjNijimj=0˙
14 inidm BB=B
15 rabeq BB=BmBB|iNjNijimj=0˙=mB|iNjNijimj=0˙
16 14 15 mp1i NFinRVmBB|iNjNijimj=0˙=mB|iNjNijimj=0˙
17 13 16 eqtrid NFinRVmB|iNjNijimj=0˙B=mB|iNjNijimj=0˙
18 6 12 17 3eqtr2d NFinRVBaseD=mB|iNjNijimj=0˙