Metamath Proof Explorer


Theorem dmatALTbas

Description: The base set of the algebra of N x N diagonal matrices over a ring R , i.e. the set of all N x N diagonal matrices over the ring R . (Contributed by AV, 8-Dec-2019)

Ref Expression
Hypotheses dmatALTval.a A = N Mat R
dmatALTval.b B = Base A
dmatALTval.0 0 ˙ = 0 R
dmatALTval.d D = N DMatALT R
Assertion dmatALTbas N Fin R V Base D = m B | i N j N i j i m j = 0 ˙

Proof

Step Hyp Ref Expression
1 dmatALTval.a A = N Mat R
2 dmatALTval.b B = Base A
3 dmatALTval.0 0 ˙ = 0 R
4 dmatALTval.d D = N DMatALT R
5 1 2 3 4 dmatALTval N Fin R V D = A 𝑠 m B | i N j N i j i m j = 0 ˙
6 5 fveq2d N Fin R V Base D = Base A 𝑠 m B | i N j N i j i m j = 0 ˙
7 2 fvexi B V
8 rabexg B V m B | i N j N i j i m j = 0 ˙ V
9 7 8 mp1i N Fin R V m B | i N j N i j i m j = 0 ˙ V
10 eqid A 𝑠 m B | i N j N i j i m j = 0 ˙ = A 𝑠 m B | i N j N i j i m j = 0 ˙
11 10 2 ressbas m B | i N j N i j i m j = 0 ˙ V m B | i N j N i j i m j = 0 ˙ B = Base A 𝑠 m B | i N j N i j i m j = 0 ˙
12 9 11 syl N Fin R V m B | i N j N i j i m j = 0 ˙ B = Base A 𝑠 m B | i N j N i j i m j = 0 ˙
13 inrab2 m B | i N j N i j i m j = 0 ˙ B = m B B | i N j N i j i m j = 0 ˙
14 inidm B B = B
15 rabeq B B = B m B B | i N j N i j i m j = 0 ˙ = m B | i N j N i j i m j = 0 ˙
16 14 15 mp1i N Fin R V m B B | i N j N i j i m j = 0 ˙ = m B | i N j N i j i m j = 0 ˙
17 13 16 syl5eq N Fin R V m B | i N j N i j i m j = 0 ˙ B = m B | i N j N i j i m j = 0 ˙
18 6 12 17 3eqtr2d N Fin R V Base D = m B | i N j N i j i m j = 0 ˙