Metamath Proof Explorer


Theorem dmatALTbasel

Description: An element of the base set of the algebra of N x N diagonal matrices over a ring R , i.e. an N x N diagonal matrix over the ring R . (Contributed by AV, 8-Dec-2019)

Ref Expression
Hypotheses dmatALTval.a A=NMatR
dmatALTval.b B=BaseA
dmatALTval.0 0˙=0R
dmatALTval.d D=NDMatALTR
Assertion dmatALTbasel NFinRVMBaseDMBiNjNijiMj=0˙

Proof

Step Hyp Ref Expression
1 dmatALTval.a A=NMatR
2 dmatALTval.b B=BaseA
3 dmatALTval.0 0˙=0R
4 dmatALTval.d D=NDMatALTR
5 1 2 3 4 dmatALTbas NFinRVBaseD=mB|iNjNijimj=0˙
6 5 eleq2d NFinRVMBaseDMmB|iNjNijimj=0˙
7 oveq m=Mimj=iMj
8 7 eqeq1d m=Mimj=0˙iMj=0˙
9 8 imbi2d m=Mijimj=0˙ijiMj=0˙
10 9 2ralbidv m=MiNjNijimj=0˙iNjNijiMj=0˙
11 10 elrab MmB|iNjNijimj=0˙MBiNjNijiMj=0˙
12 6 11 bitrdi NFinRVMBaseDMBiNjNijiMj=0˙