Metamath Proof Explorer


Theorem dmatval

Description: The set of N x N diagonal matrices over (a ring) R . (Contributed by AV, 8-Dec-2019)

Ref Expression
Hypotheses dmatval.a A=NMatR
dmatval.b B=BaseA
dmatval.0 0˙=0R
dmatval.d D=NDMatR
Assertion dmatval NFinRVD=mB|iNjNijimj=0˙

Proof

Step Hyp Ref Expression
1 dmatval.a A=NMatR
2 dmatval.b B=BaseA
3 dmatval.0 0˙=0R
4 dmatval.d D=NDMatR
5 df-dmat DMat=nFin,rVmBasenMatr|injnijimj=0r
6 5 a1i NFinRVDMat=nFin,rVmBasenMatr|injnijimj=0r
7 oveq12 n=Nr=RnMatr=NMatR
8 7 fveq2d n=Nr=RBasenMatr=BaseNMatR
9 1 fveq2i BaseA=BaseNMatR
10 2 9 eqtri B=BaseNMatR
11 8 10 eqtr4di n=Nr=RBasenMatr=B
12 simpl n=Nr=Rn=N
13 fveq2 r=R0r=0R
14 13 3 eqtr4di r=R0r=0˙
15 14 adantl n=Nr=R0r=0˙
16 15 eqeq2d n=Nr=Rimj=0rimj=0˙
17 16 imbi2d n=Nr=Rijimj=0rijimj=0˙
18 12 17 raleqbidv n=Nr=Rjnijimj=0rjNijimj=0˙
19 12 18 raleqbidv n=Nr=Rinjnijimj=0riNjNijimj=0˙
20 11 19 rabeqbidv n=Nr=RmBasenMatr|injnijimj=0r=mB|iNjNijimj=0˙
21 20 adantl NFinRVn=Nr=RmBasenMatr|injnijimj=0r=mB|iNjNijimj=0˙
22 simpl NFinRVNFin
23 elex RVRV
24 23 adantl NFinRVRV
25 2 fvexi BV
26 rabexg BVmB|iNjNijimj=0˙V
27 25 26 mp1i NFinRVmB|iNjNijimj=0˙V
28 6 21 22 24 27 ovmpod NFinRVNDMatR=mB|iNjNijimj=0˙
29 4 28 eqtrid NFinRVD=mB|iNjNijimj=0˙