Metamath Proof Explorer


Theorem dmct

Description: The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)

Ref Expression
Assertion dmct AωdomAω

Proof

Step Hyp Ref Expression
1 dmresv domAV=domA
2 resss AVA
3 ctex AωAV
4 ssexg AVAAVAVV
5 2 3 4 sylancr AωAVV
6 fvex 1stxV
7 eqid xAV1stx=xAV1stx
8 6 7 fnmpti xAV1stxFnAV
9 dffn4 xAV1stxFnAVxAV1stx:AVontoranxAV1stx
10 8 9 mpbi xAV1stx:AVontoranxAV1stx
11 relres RelAV
12 reldm RelAVdomAV=ranxAV1stx
13 foeq3 domAV=ranxAV1stxxAV1stx:AVontodomAVxAV1stx:AVontoranxAV1stx
14 11 12 13 mp2b xAV1stx:AVontodomAVxAV1stx:AVontoranxAV1stx
15 10 14 mpbir xAV1stx:AVontodomAV
16 fodomg AVVxAV1stx:AVontodomAVdomAVAV
17 5 15 16 mpisyl AωdomAVAV
18 ssdomg AVAVAAVA
19 3 2 18 mpisyl AωAVA
20 domtr AVAAωAVω
21 19 20 mpancom AωAVω
22 domtr domAVAVAVωdomAVω
23 17 21 22 syl2anc AωdomAVω
24 1 23 eqbrtrrid AωdomAω