Metamath Proof Explorer


Theorem dmecd

Description: Equality of the coset of B and the coset of C implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm ). (Contributed by Peter Mazsa, 9-Oct-2018)

Ref Expression
Hypotheses dmecd.1 φdomR=A
dmecd.2 φBR=CR
Assertion dmecd φBACA

Proof

Step Hyp Ref Expression
1 dmecd.1 φdomR=A
2 dmecd.2 φBR=CR
3 2 neeq1d φBRCR
4 ecdmn0 BdomRBR
5 ecdmn0 CdomRCR
6 3 4 5 3bitr4g φBdomRCdomR
7 1 eleq2d φBdomRBA
8 1 eleq2d φCdomRCA
9 6 7 8 3bitr3d φBACA