Metamath Proof Explorer


Theorem dmin

Description: The domain of an intersection is included in the intersection of the domains. Theorem 6 of Suppes p. 60. (Contributed by NM, 15-Sep-2004)

Ref Expression
Assertion dmin domABdomAdomB

Proof

Step Hyp Ref Expression
1 19.40 yxyAxyByxyAyxyB
2 vex xV
3 2 eldm2 xdomAByxyAB
4 elin xyABxyAxyB
5 4 exbii yxyAByxyAxyB
6 3 5 bitri xdomAByxyAxyB
7 elin xdomAdomBxdomAxdomB
8 2 eldm2 xdomAyxyA
9 2 eldm2 xdomByxyB
10 8 9 anbi12i xdomAxdomByxyAyxyB
11 7 10 bitri xdomAdomByxyAyxyB
12 1 6 11 3imtr4i xdomABxdomAdomB
13 12 ssriv domABdomAdomB