Metamath Proof Explorer


Theorem dminss

Description: An upper bound for intersection with a domain. Theorem 40 of Suppes p. 66, who calls it "somewhat surprising". (Contributed by NM, 11-Aug-2004)

Ref Expression
Assertion dminss domRAR-1RA

Proof

Step Hyp Ref Expression
1 19.8a xAxRyxxAxRy
2 1 ancoms xRyxAxxAxRy
3 vex yV
4 3 elima2 yRAxxAxRy
5 2 4 sylibr xRyxAyRA
6 simpl xRyxAxRy
7 vex xV
8 3 7 brcnv yR-1xxRy
9 6 8 sylibr xRyxAyR-1x
10 5 9 jca xRyxAyRAyR-1x
11 10 eximi yxRyxAyyRAyR-1x
12 7 eldm xdomRyxRy
13 12 anbi1i xdomRxAyxRyxA
14 elin xdomRAxdomRxA
15 19.41v yxRyxAyxRyxA
16 13 14 15 3bitr4i xdomRAyxRyxA
17 7 elima2 xR-1RAyyRAyR-1x
18 11 16 17 3imtr4i xdomRAxR-1RA
19 18 ssriv domRAR-1RA