Metamath Proof Explorer


Theorem dmtpos

Description: The domain of tpos F when dom F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion dmtpos ReldomFdomtposF=domF-1

Proof

Step Hyp Ref Expression
1 0nelxp ¬V×V
2 ssel domFV×VdomFV×V
3 1 2 mtoi domFV×V¬domF
4 df-rel ReldomFdomFV×V
5 reldmtpos ReldomtposF¬domF
6 3 4 5 3imtr4i ReldomFReldomtposF
7 relcnv ReldomF-1
8 6 7 jctir ReldomFReldomtposFReldomF-1
9 vex zV
10 brtpos zVxytposFzyxFz
11 9 10 mp1i ReldomFxytposFzyxFz
12 11 exbidv ReldomFzxytposFzzyxFz
13 opex xyV
14 13 eldm xydomtposFzxytposFz
15 vex xV
16 vex yV
17 15 16 opelcnv xydomF-1yxdomF
18 opex yxV
19 18 eldm yxdomFzyxFz
20 17 19 bitri xydomF-1zyxFz
21 12 14 20 3bitr4g ReldomFxydomtposFxydomF-1
22 21 eqrelrdv2 ReldomtposFReldomF-1ReldomFdomtposF=domF-1
23 8 22 mpancom ReldomFdomtposF=domF-1