| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
|
| 2 |
1
|
eldm |
|
| 3 |
|
brtpos0 |
|
| 4 |
3
|
elv |
|
| 5 |
|
0nelrel0 |
|
| 6 |
|
vex |
|
| 7 |
1 6
|
breldm |
|
| 8 |
5 7
|
nsyl3 |
|
| 9 |
4 8
|
sylbir |
|
| 10 |
9
|
exlimiv |
|
| 11 |
2 10
|
sylbi |
|
| 12 |
11
|
con2i |
|
| 13 |
|
vex |
|
| 14 |
13
|
eldm |
|
| 15 |
|
relcnv |
|
| 16 |
|
df-rel |
|
| 17 |
15 16
|
mpbi |
|
| 18 |
17
|
sseli |
|
| 19 |
18
|
a1i |
|
| 20 |
|
elsni |
|
| 21 |
20
|
breq1d |
|
| 22 |
1 6
|
breldm |
|
| 23 |
22
|
pm2.24d |
|
| 24 |
4 23
|
sylbi |
|
| 25 |
21 24
|
biimtrdi |
|
| 26 |
25
|
com3l |
|
| 27 |
26
|
impcom |
|
| 28 |
|
brtpos2 |
|
| 29 |
6 28
|
ax-mp |
|
| 30 |
29
|
simplbi |
|
| 31 |
|
elun |
|
| 32 |
30 31
|
sylib |
|
| 33 |
32
|
adantl |
|
| 34 |
19 27 33
|
mpjaod |
|
| 35 |
34
|
ex |
|
| 36 |
35
|
exlimdv |
|
| 37 |
14 36
|
biimtrid |
|
| 38 |
37
|
ssrdv |
|
| 39 |
|
df-rel |
|
| 40 |
38 39
|
sylibr |
|
| 41 |
12 40
|
impbii |
|