| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
|- (/) e. _V |
| 2 |
1
|
eldm |
|- ( (/) e. dom F <-> E. y (/) F y ) |
| 3 |
|
brtpos0 |
|- ( y e. _V -> ( (/) tpos F y <-> (/) F y ) ) |
| 4 |
3
|
elv |
|- ( (/) tpos F y <-> (/) F y ) |
| 5 |
|
0nelrel0 |
|- ( Rel dom tpos F -> -. (/) e. dom tpos F ) |
| 6 |
|
vex |
|- y e. _V |
| 7 |
1 6
|
breldm |
|- ( (/) tpos F y -> (/) e. dom tpos F ) |
| 8 |
5 7
|
nsyl3 |
|- ( (/) tpos F y -> -. Rel dom tpos F ) |
| 9 |
4 8
|
sylbir |
|- ( (/) F y -> -. Rel dom tpos F ) |
| 10 |
9
|
exlimiv |
|- ( E. y (/) F y -> -. Rel dom tpos F ) |
| 11 |
2 10
|
sylbi |
|- ( (/) e. dom F -> -. Rel dom tpos F ) |
| 12 |
11
|
con2i |
|- ( Rel dom tpos F -> -. (/) e. dom F ) |
| 13 |
|
vex |
|- x e. _V |
| 14 |
13
|
eldm |
|- ( x e. dom tpos F <-> E. y x tpos F y ) |
| 15 |
|
relcnv |
|- Rel `' dom F |
| 16 |
|
df-rel |
|- ( Rel `' dom F <-> `' dom F C_ ( _V X. _V ) ) |
| 17 |
15 16
|
mpbi |
|- `' dom F C_ ( _V X. _V ) |
| 18 |
17
|
sseli |
|- ( x e. `' dom F -> x e. ( _V X. _V ) ) |
| 19 |
18
|
a1i |
|- ( ( -. (/) e. dom F /\ x tpos F y ) -> ( x e. `' dom F -> x e. ( _V X. _V ) ) ) |
| 20 |
|
elsni |
|- ( x e. { (/) } -> x = (/) ) |
| 21 |
20
|
breq1d |
|- ( x e. { (/) } -> ( x tpos F y <-> (/) tpos F y ) ) |
| 22 |
1 6
|
breldm |
|- ( (/) F y -> (/) e. dom F ) |
| 23 |
22
|
pm2.24d |
|- ( (/) F y -> ( -. (/) e. dom F -> x e. ( _V X. _V ) ) ) |
| 24 |
4 23
|
sylbi |
|- ( (/) tpos F y -> ( -. (/) e. dom F -> x e. ( _V X. _V ) ) ) |
| 25 |
21 24
|
biimtrdi |
|- ( x e. { (/) } -> ( x tpos F y -> ( -. (/) e. dom F -> x e. ( _V X. _V ) ) ) ) |
| 26 |
25
|
com3l |
|- ( x tpos F y -> ( -. (/) e. dom F -> ( x e. { (/) } -> x e. ( _V X. _V ) ) ) ) |
| 27 |
26
|
impcom |
|- ( ( -. (/) e. dom F /\ x tpos F y ) -> ( x e. { (/) } -> x e. ( _V X. _V ) ) ) |
| 28 |
|
brtpos2 |
|- ( y e. _V -> ( x tpos F y <-> ( x e. ( `' dom F u. { (/) } ) /\ U. `' { x } F y ) ) ) |
| 29 |
6 28
|
ax-mp |
|- ( x tpos F y <-> ( x e. ( `' dom F u. { (/) } ) /\ U. `' { x } F y ) ) |
| 30 |
29
|
simplbi |
|- ( x tpos F y -> x e. ( `' dom F u. { (/) } ) ) |
| 31 |
|
elun |
|- ( x e. ( `' dom F u. { (/) } ) <-> ( x e. `' dom F \/ x e. { (/) } ) ) |
| 32 |
30 31
|
sylib |
|- ( x tpos F y -> ( x e. `' dom F \/ x e. { (/) } ) ) |
| 33 |
32
|
adantl |
|- ( ( -. (/) e. dom F /\ x tpos F y ) -> ( x e. `' dom F \/ x e. { (/) } ) ) |
| 34 |
19 27 33
|
mpjaod |
|- ( ( -. (/) e. dom F /\ x tpos F y ) -> x e. ( _V X. _V ) ) |
| 35 |
34
|
ex |
|- ( -. (/) e. dom F -> ( x tpos F y -> x e. ( _V X. _V ) ) ) |
| 36 |
35
|
exlimdv |
|- ( -. (/) e. dom F -> ( E. y x tpos F y -> x e. ( _V X. _V ) ) ) |
| 37 |
14 36
|
biimtrid |
|- ( -. (/) e. dom F -> ( x e. dom tpos F -> x e. ( _V X. _V ) ) ) |
| 38 |
37
|
ssrdv |
|- ( -. (/) e. dom F -> dom tpos F C_ ( _V X. _V ) ) |
| 39 |
|
df-rel |
|- ( Rel dom tpos F <-> dom tpos F C_ ( _V X. _V ) ) |
| 40 |
38 39
|
sylibr |
|- ( -. (/) e. dom F -> Rel dom tpos F ) |
| 41 |
12 40
|
impbii |
|- ( Rel dom tpos F <-> -. (/) e. dom F ) |