Metamath Proof Explorer


Theorem dmuni

Description: The domain of a union. Part of Exercise 8 of Enderton p. 41. (Contributed by NM, 3-Feb-2004)

Ref Expression
Assertion dmuni domA=xAdomx

Proof

Step Hyp Ref Expression
1 excom zxyzxxAxzyzxxA
2 ancom zyzxxAxAzyzx
3 19.41v zyzxxAzyzxxA
4 vex yV
5 4 eldm2 ydomxzyzx
6 5 anbi2i xAydomxxAzyzx
7 2 3 6 3bitr4i zyzxxAxAydomx
8 7 exbii xzyzxxAxxAydomx
9 1 8 bitri zxyzxxAxxAydomx
10 eluni yzAxyzxxA
11 10 exbii zyzAzxyzxxA
12 df-rex xAydomxxxAydomx
13 9 11 12 3bitr4i zyzAxAydomx
14 4 eldm2 ydomAzyzA
15 eliun yxAdomxxAydomx
16 13 14 15 3bitr4i ydomAyxAdomx
17 16 eqriv domA=xAdomx