Metamath Proof Explorer


Theorem dmvolsal

Description: Lebesgue measurable sets form a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion dmvolsal domvolSAlg

Proof

Step Hyp Ref Expression
1 reex V
2 1 pwex 𝒫V
3 dmvolss domvol𝒫
4 2 3 ssexi domvolV
5 4 a1i domvolV
6 0mbl domvol
7 6 a1i domvol
8 unidmvol domvol=
9 8 eqcomi =domvol
10 cmmbl ydomvolydomvol
11 10 adantl ydomvolydomvol
12 ffvelcdm e:domvolnendomvol
13 12 ralrimiva e:domvolnendomvol
14 iunmbl nendomvolnendomvol
15 13 14 syl e:domvolnendomvol
16 15 adantl e:domvolnendomvol
17 5 7 9 11 16 issalnnd domvolSAlg
18 17 mptru domvolSAlg