Metamath Proof Explorer


Theorem dnibndlem1

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem1.1 T=xx+12x
dnibndlem1.2 φA
dnibndlem1.3 φB
Assertion dnibndlem1 φTBTASB+12BA+12AS

Proof

Step Hyp Ref Expression
1 dnibndlem1.1 T=xx+12x
2 dnibndlem1.2 φA
3 dnibndlem1.3 φB
4 1 dnival BTB=B+12B
5 3 4 syl φTB=B+12B
6 1 dnival ATA=A+12A
7 2 6 syl φTA=A+12A
8 5 7 oveq12d φTBTA=B+12BA+12A
9 8 fveq2d φTBTA=B+12BA+12A
10 9 breq1d φTBTASB+12BA+12AS