Metamath Proof Explorer


Theorem dominf

Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-cc . See dominfac for a version proved from ax-ac . The axiom of Regularity is used for this proof, via inf3lem6 , and its use is necessary: otherwise the set A = { A } or A = { (/) , A } (where the second example even has nonempty well-founded part) provides a counterexample. (Contributed by Mario Carneiro, 9-Feb-2013)

Ref Expression
Hypothesis dominf.1 AV
Assertion dominf AAAωA

Proof

Step Hyp Ref Expression
1 dominf.1 AV
2 neeq1 x=AxA
3 id x=Ax=A
4 unieq x=Ax=A
5 3 4 sseq12d x=AxxAA
6 2 5 anbi12d x=AxxxAAA
7 breq2 x=AωxωA
8 6 7 imbi12d x=AxxxωxAAAωA
9 eqid yVwx|wxy=yVwx|wxy
10 eqid recyVwx|wxyω=recyVwx|wxyω
11 9 10 1 1 inf3lem6 xxxrecyVwx|wxyω:ω1-1𝒫x
12 vpwex 𝒫xV
13 12 f1dom recyVwx|wxyω:ω1-1𝒫xω𝒫x
14 pwfi xFin𝒫xFin
15 14 biimpi xFin𝒫xFin
16 isfinite xFinxω
17 isfinite 𝒫xFin𝒫xω
18 15 16 17 3imtr3i xω𝒫xω
19 18 con3i ¬𝒫xω¬xω
20 12 domtriom ω𝒫x¬𝒫xω
21 vex xV
22 21 domtriom ωx¬xω
23 19 20 22 3imtr4i ω𝒫xωx
24 11 13 23 3syl xxxωx
25 1 8 24 vtocl AAAωA