Metamath Proof Explorer


Theorem dominfac

Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-ac . See dominf for a version proved from ax-cc . (Contributed by NM, 25-Mar-2007)

Ref Expression
Hypothesis dominfac.1 AV
Assertion dominfac AAAωA

Proof

Step Hyp Ref Expression
1 dominfac.1 AV
2 neeq1 x=AxA
3 id x=Ax=A
4 unieq x=Ax=A
5 3 4 sseq12d x=AxxAA
6 2 5 anbi12d x=AxxxAAA
7 breq2 x=AωxωA
8 6 7 imbi12d x=AxxxωxAAAωA
9 eqid yVwx|wxy=yVwx|wxy
10 eqid recyVwx|wxyω=recyVwx|wxyω
11 9 10 1 1 inf3lem6 xxxrecyVwx|wxyω:ω1-1𝒫x
12 vpwex 𝒫xV
13 12 f1dom recyVwx|wxyω:ω1-1𝒫xω𝒫x
14 pwfi xFin𝒫xFin
15 14 biimpi xFin𝒫xFin
16 isfinite xFinxω
17 isfinite 𝒫xFin𝒫xω
18 15 16 17 3imtr3i xω𝒫xω
19 18 con3i ¬𝒫xω¬xω
20 omex ωV
21 domtri ωV𝒫xVω𝒫x¬𝒫xω
22 20 12 21 mp2an ω𝒫x¬𝒫xω
23 vex xV
24 domtri ωVxVωx¬xω
25 20 23 24 mp2an ωx¬xω
26 19 22 25 3imtr4i ω𝒫xωx
27 11 13 26 3syl xxxωx
28 1 8 27 vtocl AAAωA