Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-ac . See dominf for a version proved from ax-cc . (Contributed by NM, 25-Mar-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dominfac.1 | |
|
Assertion | dominfac | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dominfac.1 | |
|
2 | neeq1 | |
|
3 | id | |
|
4 | unieq | |
|
5 | 3 4 | sseq12d | |
6 | 2 5 | anbi12d | |
7 | breq2 | |
|
8 | 6 7 | imbi12d | |
9 | eqid | |
|
10 | eqid | |
|
11 | 9 10 1 1 | inf3lem6 | |
12 | vpwex | |
|
13 | 12 | f1dom | |
14 | pwfi | |
|
15 | 14 | biimpi | |
16 | isfinite | |
|
17 | isfinite | |
|
18 | 15 16 17 | 3imtr3i | |
19 | 18 | con3i | |
20 | omex | |
|
21 | domtri | |
|
22 | 20 12 21 | mp2an | |
23 | vex | |
|
24 | domtri | |
|
25 | 20 23 24 | mp2an | |
26 | 19 22 25 | 3imtr4i | |
27 | 11 13 26 | 3syl | |
28 | 1 8 27 | vtocl | |