Metamath Proof Explorer


Theorem dpjghm2

Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 φGdomDProdS
dpjfval.2 φdomS=I
dpjfval.p P=GdProjS
dpjlid.3 φXI
Assertion dpjghm2 φPXG𝑠GDProdSGrpHomG𝑠SX

Proof

Step Hyp Ref Expression
1 dpjfval.1 φGdomDProdS
2 dpjfval.2 φdomS=I
3 dpjfval.p P=GdProjS
4 dpjlid.3 φXI
5 1 2 3 4 dpjghm φPXG𝑠GDProdSGrpHomG
6 1 2 dprdf2 φS:ISubGrpG
7 6 4 ffvelcdmd φSXSubGrpG
8 1 2 3 4 dpjf φPX:GDProdSSX
9 8 frnd φranPXSX
10 eqid G𝑠SX=G𝑠SX
11 10 resghm2b SXSubGrpGranPXSXPXG𝑠GDProdSGrpHomGPXG𝑠GDProdSGrpHomG𝑠SX
12 7 9 11 syl2anc φPXG𝑠GDProdSGrpHomGPXG𝑠GDProdSGrpHomG𝑠SX
13 5 12 mpbid φPXG𝑠GDProdSGrpHomG𝑠SX