Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dpjfval.1 | |
|
dpjfval.2 | |
||
dpjfval.p | |
||
dpjlid.3 | |
||
Assertion | dpjghm2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpjfval.1 | |
|
2 | dpjfval.2 | |
|
3 | dpjfval.p | |
|
4 | dpjlid.3 | |
|
5 | 1 2 3 4 | dpjghm | |
6 | 1 2 | dprdf2 | |
7 | 6 4 | ffvelcdmd | |
8 | 1 2 3 4 | dpjf | |
9 | 8 | frnd | |
10 | eqid | |
|
11 | 10 | resghm2b | |
12 | 7 9 11 | syl2anc | |
13 | 5 12 | mpbid | |