Metamath Proof Explorer


Theorem dpjghm

Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 φGdomDProdS
dpjfval.2 φdomS=I
dpjfval.p P=GdProjS
dpjlid.3 φXI
Assertion dpjghm φPXG𝑠GDProdSGrpHomG

Proof

Step Hyp Ref Expression
1 dpjfval.1 φGdomDProdS
2 dpjfval.2 φdomS=I
3 dpjfval.p P=GdProjS
4 dpjlid.3 φXI
5 eqid +G=+G
6 eqid LSSumG=LSSumG
7 eqid 0G=0G
8 eqid CntzG=CntzG
9 1 2 dprdf2 φS:ISubGrpG
10 9 4 ffvelcdmd φSXSubGrpG
11 difssd φIXI
12 1 2 11 dprdres φGdomDProdSIXGDProdSIXGDProdS
13 12 simpld φGdomDProdSIX
14 dprdsubg GdomDProdSIXGDProdSIXSubGrpG
15 13 14 syl φGDProdSIXSubGrpG
16 1 2 4 7 dpjdisj φSXGDProdSIX=0G
17 1 2 4 8 dpjcntz φSXCntzGGDProdSIX
18 eqid proj1G=proj1G
19 5 6 7 8 10 15 16 17 18 pj1ghm φSXproj1GGDProdSIXG𝑠SXLSSumGGDProdSIXGrpHomG
20 1 2 3 18 4 dpjval φPX=SXproj1GGDProdSIX
21 1 2 4 6 dpjlsm φGDProdS=SXLSSumGGDProdSIX
22 21 oveq2d φG𝑠GDProdS=G𝑠SXLSSumGGDProdSIX
23 22 oveq1d φG𝑠GDProdSGrpHomG=G𝑠SXLSSumGGDProdSIXGrpHomG
24 19 20 23 3eltr4d φPXG𝑠GDProdSGrpHomG