Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dpjfval.1 | |
|
dpjfval.2 | |
||
dpjfval.p | |
||
dpjlid.3 | |
||
Assertion | dpjghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpjfval.1 | |
|
2 | dpjfval.2 | |
|
3 | dpjfval.p | |
|
4 | dpjlid.3 | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 1 2 | dprdf2 | |
10 | 9 4 | ffvelcdmd | |
11 | difssd | |
|
12 | 1 2 11 | dprdres | |
13 | 12 | simpld | |
14 | dprdsubg | |
|
15 | 13 14 | syl | |
16 | 1 2 4 7 | dpjdisj | |
17 | 1 2 4 8 | dpjcntz | |
18 | eqid | |
|
19 | 5 6 7 8 10 15 16 17 18 | pj1ghm | |
20 | 1 2 3 18 4 | dpjval | |
21 | 1 2 4 6 | dpjlsm | |
22 | 21 | oveq2d | |
23 | 22 | oveq1d | |
24 | 19 20 23 | 3eltr4d | |