Metamath Proof Explorer


Theorem dprd0

Description: The empty family is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypothesis dprd0.0 0˙=0G
Assertion dprd0 GGrpGdomDProdGDProd=0˙

Proof

Step Hyp Ref Expression
1 dprd0.0 0˙=0G
2 0ex V
3 1 dprdz GGrpVGdomDProdx0˙GDProdx0˙=0˙
4 2 3 mpan2 GGrpGdomDProdx0˙GDProdx0˙=0˙
5 mpt0 x0˙=
6 5 breq2i GdomDProdx0˙GdomDProd
7 5 oveq2i GDProdx0˙=GDProd
8 7 eqeq1i GDProdx0˙=0˙GDProd=0˙
9 6 8 anbi12i GdomDProdx0˙GDProdx0˙=0˙GdomDProdGDProd=0˙
10 4 9 sylib GGrpGdomDProdGDProd=0˙