| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdf1o.1 |
|
| 2 |
|
dprdf1o.2 |
|
| 3 |
|
dprdf1o.3 |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
dprdgrp |
|
| 8 |
1 7
|
syl |
|
| 9 |
|
f1of1 |
|
| 10 |
3 9
|
syl |
|
| 11 |
1 2
|
dprddomcld |
|
| 12 |
|
f1dmex |
|
| 13 |
10 11 12
|
syl2anc |
|
| 14 |
1 2
|
dprdf2 |
|
| 15 |
|
f1of |
|
| 16 |
3 15
|
syl |
|
| 17 |
|
fco |
|
| 18 |
14 16 17
|
syl2anc |
|
| 19 |
1
|
adantr |
|
| 20 |
2
|
adantr |
|
| 21 |
16
|
adantr |
|
| 22 |
|
simpr1 |
|
| 23 |
21 22
|
ffvelcdmd |
|
| 24 |
|
simpr2 |
|
| 25 |
21 24
|
ffvelcdmd |
|
| 26 |
|
simpr3 |
|
| 27 |
10
|
adantr |
|
| 28 |
|
f1fveq |
|
| 29 |
27 22 24 28
|
syl12anc |
|
| 30 |
29
|
necon3bid |
|
| 31 |
26 30
|
mpbird |
|
| 32 |
19 20 23 25 31 4
|
dprdcntz |
|
| 33 |
|
fvco3 |
|
| 34 |
21 22 33
|
syl2anc |
|
| 35 |
|
fvco3 |
|
| 36 |
21 24 35
|
syl2anc |
|
| 37 |
36
|
fveq2d |
|
| 38 |
32 34 37
|
3sstr4d |
|
| 39 |
16 33
|
sylan |
|
| 40 |
|
imaco |
|
| 41 |
3
|
adantr |
|
| 42 |
|
dff1o3 |
|
| 43 |
42
|
simprbi |
|
| 44 |
|
imadif |
|
| 45 |
41 43 44
|
3syl |
|
| 46 |
|
f1ofo |
|
| 47 |
|
foima |
|
| 48 |
41 46 47
|
3syl |
|
| 49 |
|
f1ofn |
|
| 50 |
3 49
|
syl |
|
| 51 |
|
fnsnfv |
|
| 52 |
50 51
|
sylan |
|
| 53 |
52
|
eqcomd |
|
| 54 |
48 53
|
difeq12d |
|
| 55 |
45 54
|
eqtrd |
|
| 56 |
55
|
imaeq2d |
|
| 57 |
40 56
|
eqtrid |
|
| 58 |
57
|
unieqd |
|
| 59 |
58
|
fveq2d |
|
| 60 |
39 59
|
ineq12d |
|
| 61 |
1
|
adantr |
|
| 62 |
2
|
adantr |
|
| 63 |
16
|
ffvelcdmda |
|
| 64 |
61 62 63 5 6
|
dprddisj |
|
| 65 |
60 64
|
eqtrd |
|
| 66 |
|
eqimss |
|
| 67 |
65 66
|
syl |
|
| 68 |
4 5 6 8 13 18 38 67
|
dmdprdd |
|
| 69 |
|
rnco2 |
|
| 70 |
|
forn |
|
| 71 |
3 46 70
|
3syl |
|
| 72 |
71
|
imaeq2d |
|
| 73 |
|
ffn |
|
| 74 |
|
fnima |
|
| 75 |
14 73 74
|
3syl |
|
| 76 |
72 75
|
eqtrd |
|
| 77 |
69 76
|
eqtrid |
|
| 78 |
77
|
unieqd |
|
| 79 |
78
|
fveq2d |
|
| 80 |
6
|
dprdspan |
|
| 81 |
68 80
|
syl |
|
| 82 |
6
|
dprdspan |
|
| 83 |
1 82
|
syl |
|
| 84 |
79 81 83
|
3eqtr4d |
|
| 85 |
68 84
|
jca |
|