| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdf1o.1 |
|- ( ph -> G dom DProd S ) |
| 2 |
|
dprdf1o.2 |
|- ( ph -> dom S = I ) |
| 3 |
|
dprdf1o.3 |
|- ( ph -> F : J -1-1-onto-> I ) |
| 4 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
| 5 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 6 |
|
eqid |
|- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
| 7 |
|
dprdgrp |
|- ( G dom DProd S -> G e. Grp ) |
| 8 |
1 7
|
syl |
|- ( ph -> G e. Grp ) |
| 9 |
|
f1of1 |
|- ( F : J -1-1-onto-> I -> F : J -1-1-> I ) |
| 10 |
3 9
|
syl |
|- ( ph -> F : J -1-1-> I ) |
| 11 |
1 2
|
dprddomcld |
|- ( ph -> I e. _V ) |
| 12 |
|
f1dmex |
|- ( ( F : J -1-1-> I /\ I e. _V ) -> J e. _V ) |
| 13 |
10 11 12
|
syl2anc |
|- ( ph -> J e. _V ) |
| 14 |
1 2
|
dprdf2 |
|- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 15 |
|
f1of |
|- ( F : J -1-1-onto-> I -> F : J --> I ) |
| 16 |
3 15
|
syl |
|- ( ph -> F : J --> I ) |
| 17 |
|
fco |
|- ( ( S : I --> ( SubGrp ` G ) /\ F : J --> I ) -> ( S o. F ) : J --> ( SubGrp ` G ) ) |
| 18 |
14 16 17
|
syl2anc |
|- ( ph -> ( S o. F ) : J --> ( SubGrp ` G ) ) |
| 19 |
1
|
adantr |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> G dom DProd S ) |
| 20 |
2
|
adantr |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> dom S = I ) |
| 21 |
16
|
adantr |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> F : J --> I ) |
| 22 |
|
simpr1 |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> x e. J ) |
| 23 |
21 22
|
ffvelcdmd |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( F ` x ) e. I ) |
| 24 |
|
simpr2 |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> y e. J ) |
| 25 |
21 24
|
ffvelcdmd |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( F ` y ) e. I ) |
| 26 |
|
simpr3 |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> x =/= y ) |
| 27 |
10
|
adantr |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> F : J -1-1-> I ) |
| 28 |
|
f1fveq |
|- ( ( F : J -1-1-> I /\ ( x e. J /\ y e. J ) ) -> ( ( F ` x ) = ( F ` y ) <-> x = y ) ) |
| 29 |
27 22 24 28
|
syl12anc |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( F ` x ) = ( F ` y ) <-> x = y ) ) |
| 30 |
29
|
necon3bid |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( F ` x ) =/= ( F ` y ) <-> x =/= y ) ) |
| 31 |
26 30
|
mpbird |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( F ` x ) =/= ( F ` y ) ) |
| 32 |
19 20 23 25 31 4
|
dprdcntz |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( S ` ( F ` x ) ) C_ ( ( Cntz ` G ) ` ( S ` ( F ` y ) ) ) ) |
| 33 |
|
fvco3 |
|- ( ( F : J --> I /\ x e. J ) -> ( ( S o. F ) ` x ) = ( S ` ( F ` x ) ) ) |
| 34 |
21 22 33
|
syl2anc |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( S o. F ) ` x ) = ( S ` ( F ` x ) ) ) |
| 35 |
|
fvco3 |
|- ( ( F : J --> I /\ y e. J ) -> ( ( S o. F ) ` y ) = ( S ` ( F ` y ) ) ) |
| 36 |
21 24 35
|
syl2anc |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( S o. F ) ` y ) = ( S ` ( F ` y ) ) ) |
| 37 |
36
|
fveq2d |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( Cntz ` G ) ` ( ( S o. F ) ` y ) ) = ( ( Cntz ` G ) ` ( S ` ( F ` y ) ) ) ) |
| 38 |
32 34 37
|
3sstr4d |
|- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( S o. F ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S o. F ) ` y ) ) ) |
| 39 |
16 33
|
sylan |
|- ( ( ph /\ x e. J ) -> ( ( S o. F ) ` x ) = ( S ` ( F ` x ) ) ) |
| 40 |
|
imaco |
|- ( ( S o. F ) " ( J \ { x } ) ) = ( S " ( F " ( J \ { x } ) ) ) |
| 41 |
3
|
adantr |
|- ( ( ph /\ x e. J ) -> F : J -1-1-onto-> I ) |
| 42 |
|
dff1o3 |
|- ( F : J -1-1-onto-> I <-> ( F : J -onto-> I /\ Fun `' F ) ) |
| 43 |
42
|
simprbi |
|- ( F : J -1-1-onto-> I -> Fun `' F ) |
| 44 |
|
imadif |
|- ( Fun `' F -> ( F " ( J \ { x } ) ) = ( ( F " J ) \ ( F " { x } ) ) ) |
| 45 |
41 43 44
|
3syl |
|- ( ( ph /\ x e. J ) -> ( F " ( J \ { x } ) ) = ( ( F " J ) \ ( F " { x } ) ) ) |
| 46 |
|
f1ofo |
|- ( F : J -1-1-onto-> I -> F : J -onto-> I ) |
| 47 |
|
foima |
|- ( F : J -onto-> I -> ( F " J ) = I ) |
| 48 |
41 46 47
|
3syl |
|- ( ( ph /\ x e. J ) -> ( F " J ) = I ) |
| 49 |
|
f1ofn |
|- ( F : J -1-1-onto-> I -> F Fn J ) |
| 50 |
3 49
|
syl |
|- ( ph -> F Fn J ) |
| 51 |
|
fnsnfv |
|- ( ( F Fn J /\ x e. J ) -> { ( F ` x ) } = ( F " { x } ) ) |
| 52 |
50 51
|
sylan |
|- ( ( ph /\ x e. J ) -> { ( F ` x ) } = ( F " { x } ) ) |
| 53 |
52
|
eqcomd |
|- ( ( ph /\ x e. J ) -> ( F " { x } ) = { ( F ` x ) } ) |
| 54 |
48 53
|
difeq12d |
|- ( ( ph /\ x e. J ) -> ( ( F " J ) \ ( F " { x } ) ) = ( I \ { ( F ` x ) } ) ) |
| 55 |
45 54
|
eqtrd |
|- ( ( ph /\ x e. J ) -> ( F " ( J \ { x } ) ) = ( I \ { ( F ` x ) } ) ) |
| 56 |
55
|
imaeq2d |
|- ( ( ph /\ x e. J ) -> ( S " ( F " ( J \ { x } ) ) ) = ( S " ( I \ { ( F ` x ) } ) ) ) |
| 57 |
40 56
|
eqtrid |
|- ( ( ph /\ x e. J ) -> ( ( S o. F ) " ( J \ { x } ) ) = ( S " ( I \ { ( F ` x ) } ) ) ) |
| 58 |
57
|
unieqd |
|- ( ( ph /\ x e. J ) -> U. ( ( S o. F ) " ( J \ { x } ) ) = U. ( S " ( I \ { ( F ` x ) } ) ) ) |
| 59 |
58
|
fveq2d |
|- ( ( ph /\ x e. J ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { ( F ` x ) } ) ) ) ) |
| 60 |
39 59
|
ineq12d |
|- ( ( ph /\ x e. J ) -> ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) = ( ( S ` ( F ` x ) ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { ( F ` x ) } ) ) ) ) ) |
| 61 |
1
|
adantr |
|- ( ( ph /\ x e. J ) -> G dom DProd S ) |
| 62 |
2
|
adantr |
|- ( ( ph /\ x e. J ) -> dom S = I ) |
| 63 |
16
|
ffvelcdmda |
|- ( ( ph /\ x e. J ) -> ( F ` x ) e. I ) |
| 64 |
61 62 63 5 6
|
dprddisj |
|- ( ( ph /\ x e. J ) -> ( ( S ` ( F ` x ) ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { ( F ` x ) } ) ) ) ) = { ( 0g ` G ) } ) |
| 65 |
60 64
|
eqtrd |
|- ( ( ph /\ x e. J ) -> ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) = { ( 0g ` G ) } ) |
| 66 |
|
eqimss |
|- ( ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) = { ( 0g ` G ) } -> ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) |
| 67 |
65 66
|
syl |
|- ( ( ph /\ x e. J ) -> ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) |
| 68 |
4 5 6 8 13 18 38 67
|
dmdprdd |
|- ( ph -> G dom DProd ( S o. F ) ) |
| 69 |
|
rnco2 |
|- ran ( S o. F ) = ( S " ran F ) |
| 70 |
|
forn |
|- ( F : J -onto-> I -> ran F = I ) |
| 71 |
3 46 70
|
3syl |
|- ( ph -> ran F = I ) |
| 72 |
71
|
imaeq2d |
|- ( ph -> ( S " ran F ) = ( S " I ) ) |
| 73 |
|
ffn |
|- ( S : I --> ( SubGrp ` G ) -> S Fn I ) |
| 74 |
|
fnima |
|- ( S Fn I -> ( S " I ) = ran S ) |
| 75 |
14 73 74
|
3syl |
|- ( ph -> ( S " I ) = ran S ) |
| 76 |
72 75
|
eqtrd |
|- ( ph -> ( S " ran F ) = ran S ) |
| 77 |
69 76
|
eqtrid |
|- ( ph -> ran ( S o. F ) = ran S ) |
| 78 |
77
|
unieqd |
|- ( ph -> U. ran ( S o. F ) = U. ran S ) |
| 79 |
78
|
fveq2d |
|- ( ph -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S o. F ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 80 |
6
|
dprdspan |
|- ( G dom DProd ( S o. F ) -> ( G DProd ( S o. F ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S o. F ) ) ) |
| 81 |
68 80
|
syl |
|- ( ph -> ( G DProd ( S o. F ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S o. F ) ) ) |
| 82 |
6
|
dprdspan |
|- ( G dom DProd S -> ( G DProd S ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 83 |
1 82
|
syl |
|- ( ph -> ( G DProd S ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 84 |
79 81 83
|
3eqtr4d |
|- ( ph -> ( G DProd ( S o. F ) ) = ( G DProd S ) ) |
| 85 |
68 84
|
jca |
|- ( ph -> ( G dom DProd ( S o. F ) /\ ( G DProd ( S o. F ) ) = ( G DProd S ) ) ) |