| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdf1o.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
| 2 |
|
dprdf1o.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
| 3 |
|
dprdf1o.3 |
⊢ ( 𝜑 → 𝐹 : 𝐽 –1-1-onto→ 𝐼 ) |
| 4 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
| 5 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 6 |
|
eqid |
⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
| 7 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
| 8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 9 |
|
f1of1 |
⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼 → 𝐹 : 𝐽 –1-1→ 𝐼 ) |
| 10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐽 –1-1→ 𝐼 ) |
| 11 |
1 2
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 12 |
|
f1dmex |
⊢ ( ( 𝐹 : 𝐽 –1-1→ 𝐼 ∧ 𝐼 ∈ V ) → 𝐽 ∈ V ) |
| 13 |
10 11 12
|
syl2anc |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 14 |
1 2
|
dprdf2 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 15 |
|
f1of |
⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼 → 𝐹 : 𝐽 ⟶ 𝐼 ) |
| 16 |
3 15
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐽 ⟶ 𝐼 ) |
| 17 |
|
fco |
⊢ ( ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ 𝐹 : 𝐽 ⟶ 𝐼 ) → ( 𝑆 ∘ 𝐹 ) : 𝐽 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 18 |
14 16 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ∘ 𝐹 ) : 𝐽 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → 𝐺 dom DProd 𝑆 ) |
| 20 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → dom 𝑆 = 𝐼 ) |
| 21 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → 𝐹 : 𝐽 ⟶ 𝐼 ) |
| 22 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ 𝐽 ) |
| 23 |
21 22
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐼 ) |
| 24 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ 𝐽 ) |
| 25 |
21 24
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐼 ) |
| 26 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ≠ 𝑦 ) |
| 27 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → 𝐹 : 𝐽 –1-1→ 𝐼 ) |
| 28 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝐽 –1-1→ 𝐼 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 29 |
27 22 24 28
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 30 |
29
|
necon3bid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ 𝑥 ≠ 𝑦 ) ) |
| 31 |
26 30
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
| 32 |
19 20 23 25 31 4
|
dprdcntz |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 33 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐽 ⟶ 𝐼 ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 34 |
21 22 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 35 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐽 ⟶ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑆 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 36 |
21 24 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑆 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 37 |
36
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑦 ) ) = ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 38 |
32 34 37
|
3sstr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑦 ) ) ) |
| 39 |
16 33
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 40 |
|
imaco |
⊢ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) = ( 𝑆 “ ( 𝐹 “ ( 𝐽 ∖ { 𝑥 } ) ) ) |
| 41 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝐹 : 𝐽 –1-1-onto→ 𝐼 ) |
| 42 |
|
dff1o3 |
⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼 ↔ ( 𝐹 : 𝐽 –onto→ 𝐼 ∧ Fun ◡ 𝐹 ) ) |
| 43 |
42
|
simprbi |
⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼 → Fun ◡ 𝐹 ) |
| 44 |
|
imadif |
⊢ ( Fun ◡ 𝐹 → ( 𝐹 “ ( 𝐽 ∖ { 𝑥 } ) ) = ( ( 𝐹 “ 𝐽 ) ∖ ( 𝐹 “ { 𝑥 } ) ) ) |
| 45 |
41 43 44
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ ( 𝐽 ∖ { 𝑥 } ) ) = ( ( 𝐹 “ 𝐽 ) ∖ ( 𝐹 “ { 𝑥 } ) ) ) |
| 46 |
|
f1ofo |
⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼 → 𝐹 : 𝐽 –onto→ 𝐼 ) |
| 47 |
|
foima |
⊢ ( 𝐹 : 𝐽 –onto→ 𝐼 → ( 𝐹 “ 𝐽 ) = 𝐼 ) |
| 48 |
41 46 47
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝐽 ) = 𝐼 ) |
| 49 |
|
f1ofn |
⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼 → 𝐹 Fn 𝐽 ) |
| 50 |
3 49
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝐽 ) |
| 51 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn 𝐽 ∧ 𝑥 ∈ 𝐽 ) → { ( 𝐹 ‘ 𝑥 ) } = ( 𝐹 “ { 𝑥 } ) ) |
| 52 |
50 51
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → { ( 𝐹 ‘ 𝑥 ) } = ( 𝐹 “ { 𝑥 } ) ) |
| 53 |
52
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ { 𝑥 } ) = { ( 𝐹 ‘ 𝑥 ) } ) |
| 54 |
48 53
|
difeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝐹 “ 𝐽 ) ∖ ( 𝐹 “ { 𝑥 } ) ) = ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) |
| 55 |
45 54
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ ( 𝐽 ∖ { 𝑥 } ) ) = ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) |
| 56 |
55
|
imaeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝑆 “ ( 𝐹 “ ( 𝐽 ∖ { 𝑥 } ) ) ) = ( 𝑆 “ ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
| 57 |
40 56
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) = ( 𝑆 “ ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
| 58 |
57
|
unieqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ∪ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) = ∪ ( 𝑆 “ ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
| 59 |
58
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) ) ) |
| 60 |
39 59
|
ineq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) ) ) = ( ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) ) ) ) |
| 61 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝐺 dom DProd 𝑆 ) |
| 62 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → dom 𝑆 = 𝐼 ) |
| 63 |
16
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐼 ) |
| 64 |
61 62 63 5 6
|
dprddisj |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
| 65 |
60 64
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
| 66 |
|
eqimss |
⊢ ( ( ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } → ( ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 67 |
65 66
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 68 |
4 5 6 8 13 18 38 67
|
dmdprdd |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ∘ 𝐹 ) ) |
| 69 |
|
rnco2 |
⊢ ran ( 𝑆 ∘ 𝐹 ) = ( 𝑆 “ ran 𝐹 ) |
| 70 |
|
forn |
⊢ ( 𝐹 : 𝐽 –onto→ 𝐼 → ran 𝐹 = 𝐼 ) |
| 71 |
3 46 70
|
3syl |
⊢ ( 𝜑 → ran 𝐹 = 𝐼 ) |
| 72 |
71
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑆 “ ran 𝐹 ) = ( 𝑆 “ 𝐼 ) ) |
| 73 |
|
ffn |
⊢ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) → 𝑆 Fn 𝐼 ) |
| 74 |
|
fnima |
⊢ ( 𝑆 Fn 𝐼 → ( 𝑆 “ 𝐼 ) = ran 𝑆 ) |
| 75 |
14 73 74
|
3syl |
⊢ ( 𝜑 → ( 𝑆 “ 𝐼 ) = ran 𝑆 ) |
| 76 |
72 75
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 “ ran 𝐹 ) = ran 𝑆 ) |
| 77 |
69 76
|
eqtrid |
⊢ ( 𝜑 → ran ( 𝑆 ∘ 𝐹 ) = ran 𝑆 ) |
| 78 |
77
|
unieqd |
⊢ ( 𝜑 → ∪ ran ( 𝑆 ∘ 𝐹 ) = ∪ ran 𝑆 ) |
| 79 |
78
|
fveq2d |
⊢ ( 𝜑 → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ∘ 𝐹 ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
| 80 |
6
|
dprdspan |
⊢ ( 𝐺 dom DProd ( 𝑆 ∘ 𝐹 ) → ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ∘ 𝐹 ) ) ) |
| 81 |
68 80
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ∘ 𝐹 ) ) ) |
| 82 |
6
|
dprdspan |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
| 83 |
1 82
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
| 84 |
79 81 83
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) = ( 𝐺 DProd 𝑆 ) ) |
| 85 |
68 84
|
jca |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ∘ 𝐹 ) ∧ ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) = ( 𝐺 DProd 𝑆 ) ) ) |