| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprd0.0 |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
|
simpl |
|
| 5 |
|
simpr |
|
| 6 |
1
|
0subg |
|
| 7 |
6
|
ad2antrr |
|
| 8 |
7
|
fmpttd |
|
| 9 |
|
eqid |
|
| 10 |
9 1
|
grpidcl |
|
| 11 |
10
|
adantr |
|
| 12 |
11
|
snssd |
|
| 13 |
9 2
|
cntzsubg |
|
| 14 |
12 13
|
syldan |
|
| 15 |
1
|
subg0cl |
|
| 16 |
14 15
|
syl |
|
| 17 |
16
|
snssd |
|
| 18 |
17
|
adantr |
|
| 19 |
|
simpr1 |
|
| 20 |
|
eqidd |
|
| 21 |
|
eqid |
|
| 22 |
|
snex |
|
| 23 |
20 21 22
|
fvmpt3i |
|
| 24 |
19 23
|
syl |
|
| 25 |
|
simpr2 |
|
| 26 |
|
eqidd |
|
| 27 |
26 21 22
|
fvmpt3i |
|
| 28 |
25 27
|
syl |
|
| 29 |
28
|
fveq2d |
|
| 30 |
18 24 29
|
3sstr4d |
|
| 31 |
23
|
adantl |
|
| 32 |
31
|
ineq1d |
|
| 33 |
9
|
subgacs |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
34
|
acsmred |
|
| 36 |
|
imassrn |
|
| 37 |
8
|
adantr |
|
| 38 |
37
|
frnd |
|
| 39 |
|
mresspw |
|
| 40 |
35 39
|
syl |
|
| 41 |
38 40
|
sstrd |
|
| 42 |
36 41
|
sstrid |
|
| 43 |
|
sspwuni |
|
| 44 |
42 43
|
sylib |
|
| 45 |
3
|
mrccl |
|
| 46 |
35 44 45
|
syl2anc |
|
| 47 |
1
|
subg0cl |
|
| 48 |
46 47
|
syl |
|
| 49 |
48
|
snssd |
|
| 50 |
|
dfss2 |
|
| 51 |
49 50
|
sylib |
|
| 52 |
32 51
|
eqtrd |
|
| 53 |
|
eqimss |
|
| 54 |
52 53
|
syl |
|
| 55 |
2 1 3 4 5 8 30 54
|
dmdprdd |
|
| 56 |
21 7
|
dmmptd |
|
| 57 |
6
|
adantr |
|
| 58 |
|
eqimss |
|
| 59 |
31 58
|
syl |
|
| 60 |
55 56 57 59
|
dprdlub |
|
| 61 |
|
dprdsubg |
|
| 62 |
1
|
subg0cl |
|
| 63 |
55 61 62
|
3syl |
|
| 64 |
63
|
snssd |
|
| 65 |
60 64
|
eqssd |
|
| 66 |
55 65
|
jca |
|