| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprd0.0 |
|- .0. = ( 0g ` G ) |
| 2 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
| 3 |
|
eqid |
|- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
| 4 |
|
simpl |
|- ( ( G e. Grp /\ I e. V ) -> G e. Grp ) |
| 5 |
|
simpr |
|- ( ( G e. Grp /\ I e. V ) -> I e. V ) |
| 6 |
1
|
0subg |
|- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |
| 7 |
6
|
ad2antrr |
|- ( ( ( G e. Grp /\ I e. V ) /\ x e. I ) -> { .0. } e. ( SubGrp ` G ) ) |
| 8 |
7
|
fmpttd |
|- ( ( G e. Grp /\ I e. V ) -> ( x e. I |-> { .0. } ) : I --> ( SubGrp ` G ) ) |
| 9 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 10 |
9 1
|
grpidcl |
|- ( G e. Grp -> .0. e. ( Base ` G ) ) |
| 11 |
10
|
adantr |
|- ( ( G e. Grp /\ I e. V ) -> .0. e. ( Base ` G ) ) |
| 12 |
11
|
snssd |
|- ( ( G e. Grp /\ I e. V ) -> { .0. } C_ ( Base ` G ) ) |
| 13 |
9 2
|
cntzsubg |
|- ( ( G e. Grp /\ { .0. } C_ ( Base ` G ) ) -> ( ( Cntz ` G ) ` { .0. } ) e. ( SubGrp ` G ) ) |
| 14 |
12 13
|
syldan |
|- ( ( G e. Grp /\ I e. V ) -> ( ( Cntz ` G ) ` { .0. } ) e. ( SubGrp ` G ) ) |
| 15 |
1
|
subg0cl |
|- ( ( ( Cntz ` G ) ` { .0. } ) e. ( SubGrp ` G ) -> .0. e. ( ( Cntz ` G ) ` { .0. } ) ) |
| 16 |
14 15
|
syl |
|- ( ( G e. Grp /\ I e. V ) -> .0. e. ( ( Cntz ` G ) ` { .0. } ) ) |
| 17 |
16
|
snssd |
|- ( ( G e. Grp /\ I e. V ) -> { .0. } C_ ( ( Cntz ` G ) ` { .0. } ) ) |
| 18 |
17
|
adantr |
|- ( ( ( G e. Grp /\ I e. V ) /\ ( y e. I /\ z e. I /\ y =/= z ) ) -> { .0. } C_ ( ( Cntz ` G ) ` { .0. } ) ) |
| 19 |
|
simpr1 |
|- ( ( ( G e. Grp /\ I e. V ) /\ ( y e. I /\ z e. I /\ y =/= z ) ) -> y e. I ) |
| 20 |
|
eqidd |
|- ( x = y -> { .0. } = { .0. } ) |
| 21 |
|
eqid |
|- ( x e. I |-> { .0. } ) = ( x e. I |-> { .0. } ) |
| 22 |
|
snex |
|- { .0. } e. _V |
| 23 |
20 21 22
|
fvmpt3i |
|- ( y e. I -> ( ( x e. I |-> { .0. } ) ` y ) = { .0. } ) |
| 24 |
19 23
|
syl |
|- ( ( ( G e. Grp /\ I e. V ) /\ ( y e. I /\ z e. I /\ y =/= z ) ) -> ( ( x e. I |-> { .0. } ) ` y ) = { .0. } ) |
| 25 |
|
simpr2 |
|- ( ( ( G e. Grp /\ I e. V ) /\ ( y e. I /\ z e. I /\ y =/= z ) ) -> z e. I ) |
| 26 |
|
eqidd |
|- ( x = z -> { .0. } = { .0. } ) |
| 27 |
26 21 22
|
fvmpt3i |
|- ( z e. I -> ( ( x e. I |-> { .0. } ) ` z ) = { .0. } ) |
| 28 |
25 27
|
syl |
|- ( ( ( G e. Grp /\ I e. V ) /\ ( y e. I /\ z e. I /\ y =/= z ) ) -> ( ( x e. I |-> { .0. } ) ` z ) = { .0. } ) |
| 29 |
28
|
fveq2d |
|- ( ( ( G e. Grp /\ I e. V ) /\ ( y e. I /\ z e. I /\ y =/= z ) ) -> ( ( Cntz ` G ) ` ( ( x e. I |-> { .0. } ) ` z ) ) = ( ( Cntz ` G ) ` { .0. } ) ) |
| 30 |
18 24 29
|
3sstr4d |
|- ( ( ( G e. Grp /\ I e. V ) /\ ( y e. I /\ z e. I /\ y =/= z ) ) -> ( ( x e. I |-> { .0. } ) ` y ) C_ ( ( Cntz ` G ) ` ( ( x e. I |-> { .0. } ) ` z ) ) ) |
| 31 |
23
|
adantl |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( ( x e. I |-> { .0. } ) ` y ) = { .0. } ) |
| 32 |
31
|
ineq1d |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( ( ( x e. I |-> { .0. } ) ` y ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) = ( { .0. } i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) ) |
| 33 |
9
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 34 |
33
|
ad2antrr |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 35 |
34
|
acsmred |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 36 |
|
imassrn |
|- ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) C_ ran ( x e. I |-> { .0. } ) |
| 37 |
8
|
adantr |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( x e. I |-> { .0. } ) : I --> ( SubGrp ` G ) ) |
| 38 |
37
|
frnd |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ran ( x e. I |-> { .0. } ) C_ ( SubGrp ` G ) ) |
| 39 |
|
mresspw |
|- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
| 40 |
35 39
|
syl |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
| 41 |
38 40
|
sstrd |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ran ( x e. I |-> { .0. } ) C_ ~P ( Base ` G ) ) |
| 42 |
36 41
|
sstrid |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) C_ ~P ( Base ` G ) ) |
| 43 |
|
sspwuni |
|- ( ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) C_ ~P ( Base ` G ) <-> U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) C_ ( Base ` G ) ) |
| 44 |
42 43
|
sylib |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) C_ ( Base ` G ) ) |
| 45 |
3
|
mrccl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) e. ( SubGrp ` G ) ) |
| 46 |
35 44 45
|
syl2anc |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) e. ( SubGrp ` G ) ) |
| 47 |
1
|
subg0cl |
|- ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) e. ( SubGrp ` G ) -> .0. e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) |
| 48 |
46 47
|
syl |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> .0. e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) |
| 49 |
48
|
snssd |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> { .0. } C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) |
| 50 |
|
dfss2 |
|- ( { .0. } C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) <-> ( { .0. } i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) = { .0. } ) |
| 51 |
49 50
|
sylib |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( { .0. } i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) = { .0. } ) |
| 52 |
32 51
|
eqtrd |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( ( ( x e. I |-> { .0. } ) ` y ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) = { .0. } ) |
| 53 |
|
eqimss |
|- ( ( ( ( x e. I |-> { .0. } ) ` y ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) = { .0. } -> ( ( ( x e. I |-> { .0. } ) ` y ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) C_ { .0. } ) |
| 54 |
52 53
|
syl |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( ( ( x e. I |-> { .0. } ) ` y ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) C_ { .0. } ) |
| 55 |
2 1 3 4 5 8 30 54
|
dmdprdd |
|- ( ( G e. Grp /\ I e. V ) -> G dom DProd ( x e. I |-> { .0. } ) ) |
| 56 |
21 7
|
dmmptd |
|- ( ( G e. Grp /\ I e. V ) -> dom ( x e. I |-> { .0. } ) = I ) |
| 57 |
6
|
adantr |
|- ( ( G e. Grp /\ I e. V ) -> { .0. } e. ( SubGrp ` G ) ) |
| 58 |
|
eqimss |
|- ( ( ( x e. I |-> { .0. } ) ` y ) = { .0. } -> ( ( x e. I |-> { .0. } ) ` y ) C_ { .0. } ) |
| 59 |
31 58
|
syl |
|- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( ( x e. I |-> { .0. } ) ` y ) C_ { .0. } ) |
| 60 |
55 56 57 59
|
dprdlub |
|- ( ( G e. Grp /\ I e. V ) -> ( G DProd ( x e. I |-> { .0. } ) ) C_ { .0. } ) |
| 61 |
|
dprdsubg |
|- ( G dom DProd ( x e. I |-> { .0. } ) -> ( G DProd ( x e. I |-> { .0. } ) ) e. ( SubGrp ` G ) ) |
| 62 |
1
|
subg0cl |
|- ( ( G DProd ( x e. I |-> { .0. } ) ) e. ( SubGrp ` G ) -> .0. e. ( G DProd ( x e. I |-> { .0. } ) ) ) |
| 63 |
55 61 62
|
3syl |
|- ( ( G e. Grp /\ I e. V ) -> .0. e. ( G DProd ( x e. I |-> { .0. } ) ) ) |
| 64 |
63
|
snssd |
|- ( ( G e. Grp /\ I e. V ) -> { .0. } C_ ( G DProd ( x e. I |-> { .0. } ) ) ) |
| 65 |
60 64
|
eqssd |
|- ( ( G e. Grp /\ I e. V ) -> ( G DProd ( x e. I |-> { .0. } ) ) = { .0. } ) |
| 66 |
55 65
|
jca |
|- ( ( G e. Grp /\ I e. V ) -> ( G dom DProd ( x e. I |-> { .0. } ) /\ ( G DProd ( x e. I |-> { .0. } ) ) = { .0. } ) ) |