Metamath Proof Explorer


Theorem drngdomn

Description: A division ring is a domain. (Contributed by Mario Carneiro, 29-Mar-2015)

Ref Expression
Assertion drngdomn RDivRingRDomn

Proof

Step Hyp Ref Expression
1 drngnzr RDivRingRNzRing
2 eqid BaseR=BaseR
3 eqid UnitR=UnitR
4 eqid 0R=0R
5 2 3 4 isdrng RDivRingRRingUnitR=BaseR0R
6 5 simprbi RDivRingUnitR=BaseR0R
7 drngring RDivRingRRing
8 eqid RLRegR=RLRegR
9 8 3 unitrrg RRingUnitRRLRegR
10 7 9 syl RDivRingUnitRRLRegR
11 6 10 eqsstrrd RDivRingBaseR0RRLRegR
12 2 8 4 isdomn2 RDomnRNzRingBaseR0RRLRegR
13 1 11 12 sylanbrc RDivRingRDomn