Metamath Proof Explorer


Theorem dsmmbase

Description: Base set of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015)

Ref Expression
Hypothesis dsmmval.b B=fBaseS𝑠R|xdomR|fx0RxFin
Assertion dsmmbase RVB=BaseSmR

Proof

Step Hyp Ref Expression
1 dsmmval.b B=fBaseS𝑠R|xdomR|fx0RxFin
2 elex RVRV
3 1 ssrab3 BBaseS𝑠R
4 eqid S𝑠R𝑠B=S𝑠R𝑠B
5 eqid BaseS𝑠R=BaseS𝑠R
6 4 5 ressbas2 BBaseS𝑠RB=BaseS𝑠R𝑠B
7 3 6 ax-mp B=BaseS𝑠R𝑠B
8 1 dsmmval RVSmR=S𝑠R𝑠B
9 8 fveq2d RVBaseSmR=BaseS𝑠R𝑠B
10 7 9 eqtr4id RVB=BaseSmR
11 2 10 syl RVB=BaseSmR