Metamath Proof Explorer


Theorem dtruOLD

Description: Obsolete proof of dtru as of 01-Jan-2025. (Contributed by NM, 7-Nov-2006) Avoid ax-13 . (Revised by BJ, 31-May-2019) Avoid ax-12 . (Revised by Rohan Ridenour, 9-Oct-2024) Use ax-pr instead of ax-pow . (Revised by BTernaryTau, 3-Dec-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dtruOLD ¬xx=y

Proof

Step Hyp Ref Expression
1 el wxw
2 ax-nul zx¬xz
3 elequ1 x=wxzwz
4 3 notbid x=w¬xz¬wz
5 4 spw x¬xz¬xz
6 2 5 eximii z¬xz
7 exdistrv wzxw¬xzwxwz¬xz
8 1 6 7 mpbir2an wzxw¬xz
9 ax9v2 w=zxwxz
10 9 com12 xww=zxz
11 10 con3dimp xw¬xz¬w=z
12 11 2eximi wzxw¬xzwz¬w=z
13 equequ2 z=yw=zw=y
14 13 notbid z=y¬w=z¬w=y
15 ax7v1 x=wx=yw=y
16 15 con3d x=w¬w=y¬x=y
17 16 spimevw ¬w=yx¬x=y
18 14 17 syl6bi z=y¬w=zx¬x=y
19 ax7v1 x=zx=yz=y
20 19 con3d x=z¬z=y¬x=y
21 20 spimevw ¬z=yx¬x=y
22 21 a1d ¬z=y¬w=zx¬x=y
23 18 22 pm2.61i ¬w=zx¬x=y
24 23 exlimivv wz¬w=zx¬x=y
25 8 12 24 mp2b x¬x=y
26 exnal x¬x=y¬xx=y
27 25 26 mpbi ¬xx=y