| Step |
Hyp |
Ref |
Expression |
| 1 |
|
el |
⊢ ∃ 𝑤 𝑥 ∈ 𝑤 |
| 2 |
|
ax-nul |
⊢ ∃ 𝑧 ∀ 𝑥 ¬ 𝑥 ∈ 𝑧 |
| 3 |
|
elequ1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑧 ↔ 𝑤 ∈ 𝑧 ) ) |
| 4 |
3
|
notbid |
⊢ ( 𝑥 = 𝑤 → ( ¬ 𝑥 ∈ 𝑧 ↔ ¬ 𝑤 ∈ 𝑧 ) ) |
| 5 |
4
|
spw |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑧 ) |
| 6 |
2 5
|
eximii |
⊢ ∃ 𝑧 ¬ 𝑥 ∈ 𝑧 |
| 7 |
|
exdistrv |
⊢ ( ∃ 𝑤 ∃ 𝑧 ( 𝑥 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑧 ) ↔ ( ∃ 𝑤 𝑥 ∈ 𝑤 ∧ ∃ 𝑧 ¬ 𝑥 ∈ 𝑧 ) ) |
| 8 |
1 6 7
|
mpbir2an |
⊢ ∃ 𝑤 ∃ 𝑧 ( 𝑥 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑧 ) |
| 9 |
|
ax9v2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑥 ∈ 𝑤 → 𝑥 ∈ 𝑧 ) ) |
| 10 |
9
|
com12 |
⊢ ( 𝑥 ∈ 𝑤 → ( 𝑤 = 𝑧 → 𝑥 ∈ 𝑧 ) ) |
| 11 |
10
|
con3dimp |
⊢ ( ( 𝑥 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑧 ) → ¬ 𝑤 = 𝑧 ) |
| 12 |
11
|
2eximi |
⊢ ( ∃ 𝑤 ∃ 𝑧 ( 𝑥 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑧 ) → ∃ 𝑤 ∃ 𝑧 ¬ 𝑤 = 𝑧 ) |
| 13 |
|
equequ2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑤 = 𝑧 ↔ 𝑤 = 𝑦 ) ) |
| 14 |
13
|
notbid |
⊢ ( 𝑧 = 𝑦 → ( ¬ 𝑤 = 𝑧 ↔ ¬ 𝑤 = 𝑦 ) ) |
| 15 |
|
ax7v1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 = 𝑦 → 𝑤 = 𝑦 ) ) |
| 16 |
15
|
con3d |
⊢ ( 𝑥 = 𝑤 → ( ¬ 𝑤 = 𝑦 → ¬ 𝑥 = 𝑦 ) ) |
| 17 |
16
|
spimevw |
⊢ ( ¬ 𝑤 = 𝑦 → ∃ 𝑥 ¬ 𝑥 = 𝑦 ) |
| 18 |
14 17
|
biimtrdi |
⊢ ( 𝑧 = 𝑦 → ( ¬ 𝑤 = 𝑧 → ∃ 𝑥 ¬ 𝑥 = 𝑦 ) ) |
| 19 |
|
ax7v1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑦 → 𝑧 = 𝑦 ) ) |
| 20 |
19
|
con3d |
⊢ ( 𝑥 = 𝑧 → ( ¬ 𝑧 = 𝑦 → ¬ 𝑥 = 𝑦 ) ) |
| 21 |
20
|
spimevw |
⊢ ( ¬ 𝑧 = 𝑦 → ∃ 𝑥 ¬ 𝑥 = 𝑦 ) |
| 22 |
21
|
a1d |
⊢ ( ¬ 𝑧 = 𝑦 → ( ¬ 𝑤 = 𝑧 → ∃ 𝑥 ¬ 𝑥 = 𝑦 ) ) |
| 23 |
18 22
|
pm2.61i |
⊢ ( ¬ 𝑤 = 𝑧 → ∃ 𝑥 ¬ 𝑥 = 𝑦 ) |
| 24 |
23
|
exlimivv |
⊢ ( ∃ 𝑤 ∃ 𝑧 ¬ 𝑤 = 𝑧 → ∃ 𝑥 ¬ 𝑥 = 𝑦 ) |
| 25 |
8 12 24
|
mp2b |
⊢ ∃ 𝑥 ¬ 𝑥 = 𝑦 |
| 26 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 27 |
25 26
|
mpbi |
⊢ ¬ ∀ 𝑥 𝑥 = 𝑦 |