Metamath Proof Explorer


Theorem dvafmulr

Description: Ring multiplication operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvafmul.h H=LHypK
dvafmul.t T=LTrnKW
dvafmul.e E=TEndoKW
dvafmul.u U=DVecAKW
dvafmul.f F=ScalarU
dvafmul.p ·˙=F
Assertion dvafmulr KVWH·˙=sE,tEst

Proof

Step Hyp Ref Expression
1 dvafmul.h H=LHypK
2 dvafmul.t T=LTrnKW
3 dvafmul.e E=TEndoKW
4 dvafmul.u U=DVecAKW
5 dvafmul.f F=ScalarU
6 dvafmul.p ·˙=F
7 eqid EDRingKW=EDRingKW
8 1 7 4 5 dvasca KVWHF=EDRingKW
9 8 fveq2d KVWHF=EDRingKW
10 6 9 eqtrid KVWH·˙=EDRingKW
11 eqid EDRingKW=EDRingKW
12 1 2 3 7 11 erngfmul KVWHEDRingKW=sE,tEst
13 10 12 eqtrd KVWH·˙=sE,tEst