Metamath Proof Explorer


Theorem dvaplusg

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses dvafplus.h H=LHypK
dvafplus.t T=LTrnKW
dvafplus.e E=TEndoKW
dvafplus.u U=DVecAKW
dvafplus.f F=ScalarU
dvafplus.p +˙=+F
Assertion dvaplusg KVWHRESER+˙S=fTRfSf

Proof

Step Hyp Ref Expression
1 dvafplus.h H=LHypK
2 dvafplus.t T=LTrnKW
3 dvafplus.e E=TEndoKW
4 dvafplus.u U=DVecAKW
5 dvafplus.f F=ScalarU
6 dvafplus.p +˙=+F
7 1 2 3 4 5 6 dvafplusg KVWH+˙=sE,tEgTsgtg
8 7 oveqd KVWHR+˙S=RsE,tEgTsgtgS
9 eqid sE,tEgTsgtg=sE,tEgTsgtg
10 9 2 tendopl RESERsE,tEgTsgtgS=fTRfSf
11 8 10 sylan9eq KVWHRESER+˙S=fTRfSf