Metamath Proof Explorer


Theorem dvasca

Description: The ring base set of the constructed partial vector space A are all translation group endomorphisms (for a fiducial co-atom W ). (Contributed by NM, 22-Jun-2014)

Ref Expression
Hypotheses dvasca.h H=LHypK
dvasca.d D=EDRingKW
dvasca.u U=DVecAKW
dvasca.f F=ScalarU
Assertion dvasca KXWHF=D

Proof

Step Hyp Ref Expression
1 dvasca.h H=LHypK
2 dvasca.d D=EDRingKW
3 dvasca.u U=DVecAKW
4 dvasca.f F=ScalarU
5 eqid LTrnKW=LTrnKW
6 eqid TEndoKW=TEndoKW
7 1 5 6 2 3 dvaset KXWHU=BasendxLTrnKW+ndxfLTrnKW,gLTrnKWfgScalarndxDndxsTEndoKW,fLTrnKWsf
8 7 fveq2d KXWHScalarU=ScalarBasendxLTrnKW+ndxfLTrnKW,gLTrnKWfgScalarndxDndxsTEndoKW,fLTrnKWsf
9 2 fvexi DV
10 eqid BasendxLTrnKW+ndxfLTrnKW,gLTrnKWfgScalarndxDndxsTEndoKW,fLTrnKWsf=BasendxLTrnKW+ndxfLTrnKW,gLTrnKWfgScalarndxDndxsTEndoKW,fLTrnKWsf
11 10 lmodsca DVD=ScalarBasendxLTrnKW+ndxfLTrnKW,gLTrnKWfgScalarndxDndxsTEndoKW,fLTrnKWsf
12 9 11 ax-mp D=ScalarBasendxLTrnKW+ndxfLTrnKW,gLTrnKWfgScalarndxDndxsTEndoKW,fLTrnKWsf
13 8 4 12 3eqtr4g KXWHF=D