Metamath Proof Explorer


Theorem dvavadd

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses dvafvadd.h H=LHypK
dvafvadd.t T=LTrnKW
dvafvadd.u U=DVecAKW
dvafvadd.v +˙=+U
Assertion dvavadd KVWHFTGTF+˙G=FG

Proof

Step Hyp Ref Expression
1 dvafvadd.h H=LHypK
2 dvafvadd.t T=LTrnKW
3 dvafvadd.u U=DVecAKW
4 dvafvadd.v +˙=+U
5 1 2 3 4 dvafvadd KVWH+˙=fT,gTfg
6 5 oveqd KVWHF+˙G=FfT,gTfgG
7 coexg FTGTFGV
8 coeq1 f=Ffg=Fg
9 coeq2 g=GFg=FG
10 eqid fT,gTfg=fT,gTfg
11 8 9 10 ovmpog FTGTFGVFfT,gTfgG=FG
12 7 11 mpd3an3 FTGTFfT,gTfgG=FG
13 6 12 sylan9eq KVWHFTGTF+˙G=FG