Description: A lemma to assist theorems of || with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvds2lem.1 | |
|
dvds2lem.2 | |
||
dvds2lem.3 | |
||
dvds2lem.4 | |
||
dvds2lem.5 | |
||
Assertion | dvds2lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvds2lem.1 | |
|
2 | dvds2lem.2 | |
|
3 | dvds2lem.3 | |
|
4 | dvds2lem.4 | |
|
5 | dvds2lem.5 | |
|
6 | divides | |
|
7 | divides | |
|
8 | 6 7 | bi2anan9 | |
9 | 1 2 8 | syl2anc | |
10 | 9 | biimpd | |
11 | reeanv | |
|
12 | 10 11 | syl6ibr | |
13 | oveq1 | |
|
14 | 13 | eqeq1d | |
15 | 14 | rspcev | |
16 | 4 5 15 | syl6an | |
17 | 16 | rexlimdvva | |
18 | 12 17 | syld | |
19 | divides | |
|
20 | 3 19 | syl | |
21 | 18 20 | sylibrd | |