Metamath Proof Explorer


Theorem dvds2lem

Description: A lemma to assist theorems of || with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Hypotheses dvds2lem.1 φIJ
dvds2lem.2 φKL
dvds2lem.3 φMN
dvds2lem.4 φxyZ
dvds2lem.5 φxyx I=JyK=LZ M=N
Assertion dvds2lem φIJKLMN

Proof

Step Hyp Ref Expression
1 dvds2lem.1 φIJ
2 dvds2lem.2 φKL
3 dvds2lem.3 φMN
4 dvds2lem.4 φxyZ
5 dvds2lem.5 φxyx I=JyK=LZ M=N
6 divides IJIJxx I=J
7 divides KLKLyyK=L
8 6 7 bi2anan9 IJKLIJKLxx I=JyyK=L
9 1 2 8 syl2anc φIJKLxx I=JyyK=L
10 9 biimpd φIJKLxx I=JyyK=L
11 reeanv xyx I=JyK=Lxx I=JyyK=L
12 10 11 syl6ibr φIJKLxyx I=JyK=L
13 oveq1 z=Zz M=Z M
14 13 eqeq1d z=Zz M=NZ M=N
15 14 rspcev ZZ M=Nzz M=N
16 4 5 15 syl6an φxyx I=JyK=Lzz M=N
17 16 rexlimdvva φxyx I=JyK=Lzz M=N
18 12 17 syld φIJKLzz M=N
19 divides MNMNzz M=N
20 3 19 syl φMNzz M=N
21 18 20 sylibrd φIJKLMN