Metamath Proof Explorer


Theorem dvdsprime

Description: If M divides a prime, then M is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014)

Ref Expression
Assertion dvdsprime PMMPM=PM=1

Proof

Step Hyp Ref Expression
1 isprm2 PP2mmPm=1m=P
2 breq1 m=MmPMP
3 eqeq1 m=Mm=1M=1
4 eqeq1 m=Mm=PM=P
5 3 4 orbi12d m=Mm=1m=PM=1M=P
6 orcom M=1M=PM=PM=1
7 5 6 bitrdi m=Mm=1m=PM=PM=1
8 2 7 imbi12d m=MmPm=1m=PMPM=PM=1
9 8 rspccva mmPm=1m=PMMPM=PM=1
10 9 adantll P2mmPm=1m=PMMPM=PM=1
11 1 10 sylanb PMMPM=PM=1
12 prmz PP
13 iddvds PPP
14 12 13 syl PPP
15 14 adantr PMPP
16 breq1 M=PMPPP
17 15 16 syl5ibrcom PMM=PMP
18 1dvds P1P
19 12 18 syl P1P
20 19 adantr PM1P
21 breq1 M=1MP1P
22 20 21 syl5ibrcom PMM=1MP
23 17 22 jaod PMM=PM=1MP
24 11 23 impbid PMMPM=PM=1